Зависимость скорости реакции от температуры и от природы реагирующих веществ.
Скорость химической реакции.
Химические реакции протекают с различными скоростями. Некоторые из них полностью заканчиваются за малые доли секунды, другие осуществляются за минуты, часы, дни; известны реакции, требующие для своего протекания несколько лет, десятилетий и еще более длительных отрезков времени. Кроме того, одна и та же реакция может в одних условиях, например, при повышенных температурах, протекать быстро, а в других, — например, при охлаждении, — медленно; при этом различие в скорости одной и той же реакции может быть очень большим. Знание скоростей химических реакций имеет очень большое научное и практическое значение. Например, в химической промышленности при производстве того или иного вещества от скорости реакции зависят размеры и производительность аппаратуры, количество вырабатываемого продукта. Системой в химии принято называть рассматриваемое вещество или совокупность веществ. При этом системе противопоставляется внешняя среда — вещества, окружающие систему. Обычно система физически отграничена от среды.
- в первую очередь – от природы веществ: одни вещества реагируют мгновенно, другие – медленно.
- затем – от концентрации реагентов: чем она больше, тем чаще будут сталкиваться частицы.
- в-третьих, повышение температуры также будет ускорять реакцию: чем выше температура, тем легче частицам образовывать активированный комплекс и преодолеть энергетический барьер.
- для гетерогенных реакций самый важный фактор – площадь контакта реагентов (она напрямую зависит от степени измельчения).
- наконец, в присутствии веществ-катализаторов тоже достигается рост скорости реакции.
Зависимость скорости реакции от температуры и от природы реагирующих веществ. Молекулярно-кинетическая теория газов и жидкостей дает возможность подсчитать число соударений между молекулами тех или иных веществ при определенных условиях. Если воспользоваться результатами таких подсчетов, то окажется, что число столкновений между молекулами веществ при обычных условиях столь велико, что все реакции должны протекать практически мгновенно. Однако в действительности далеко не все реакции заканчиваются быстро. Это противоречие можно объяснить, если предположить, что не всякое столкновение молекул реагирующих веществ приводит к образованию продукта реакции. Для того чтобы произошла реакция, т. е. чтобы образовались новые молекулы, необходимо сначала разорвать или ослабить связи между атомами в молекулах исходных веществ. На это надо затратить определенную энергию. Если сталкивающиеся молекулы не обладают такой энергией, то столкновение будет неэффективным — не приведет к образованию новой молекулы. Если же кинетическая энергия сталкивающихся молекул достаточна для ослабления или разрыва связей, то столкновение может привести к перестройке атомов и к образованию молекулы нового вещества. Избыточная энергия, которой должны обладать молекулы для того, чтобы их столкновение могло привести к образованию нового вещества, называется энергией активации данной реакции. Энергию активации выражают в кДж/моль. Молекулы, обладающие такой энергией, называются активными молекулами. С ростом температуры число активных молекул возрастает. Отсюда следует, что и скорость химической реакции должна увеличиваться с повышением температуры. Действительно, при возрастании температуры химические реакции протекают быстрее.
рис.1 рис.2 Рассмотрим столбик шириной ΔЕ и высотой, равной ординате кривой. Площадь такого столбика будет равна ΔЕΔN/(N ΔЕ)= ΔN/N, т. е. доле молекул, энергия которых лежит в интервале ΔЕ. Аналогично площадь, ограниченная кривой, двумя ординатами и осью абсцисс, равна доле молекул газа, энергия которых лежит в данном промежутке — в нашем случае в промежутке от Е1 до Е2. Точно так же площадь, лежащая под кривой и ограниченная слева ординатой (например, ординатой, отвечающей Eз), равна доле молекул, энергия которых превышает значение Е3 (участок на рис.1, покрытый сеткой). Площадь, ограниченная всей кривой и осью абсцисс, равна единице. Кривая на рис.1 показывает, что молекулы газа, находящегося при постоянной температуре, обладают различной энергией. Наибольшая часть их имеет энергию, равную некоторой средней величине Еcр или близкую к ней. Но имеются молекулы, энергия которых больше или меньше Еср. При этом, чем сильнее отличается энергия от Еср, т. е. чем дальше от максимума расположена точка кривой, тем меньшая доля молекул газа обладает такой энергией. Как изменится кривая при изменении температуры? На рис. 2 показаны две кривые, отвечающие одному и тому же количеству газа, находящегося при температурах Т1 и Т2 (Т2 > Т1). Видно, что кривая, относящаяся к температуре Т2, смещена вправо — в сторону более высоких энергий.
Если на рис.2 отметить энергию активации Еа какой-либо реакции, протекающей с участием данного газа, то будет видно, что доля молекул газа, энергия которых превышает Еа, резко возрастает с повышением температуры. Возрастание скорости реакции с ростом температуры принято характеризовать температурным коэффициентом скорости реакции — числом, показывающим, во сколько раз возрастает скорость данной реакции при повышении температуры системы на 10 градусов. Температурный коэффициент различных реакций различен. При обычных температурах его значение для большинства реакций лежит в пределах от 2 до 4. Это на первый взгляд небольшое значение температурного коэффициента обусловливает, однако, большое возрастание скорости реакции при значительном повышении температуры. Например, если температурный коэффициент равен 2,9, то при возрастании температуры на 100 градусов скорость реакции увеличивается в 2,910, т. е. приблизительно в 50000 раз.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|