Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Стандартизация методов спецификации и описания современных телекоммуникационных архитектур

 

Современные телекоммуникационные архитектуры и создаваемые для них новые протоколы сигнализации вызвали необходимость в дополнительных языках их спецификаций и описаний: ASN.l (Abstract Syntax Notation One) для протоколов модели Взаимодействия открытых систем (ВОС или OSI в английской аббревиатуре), TTCN (Tree and Tabular Combined Notation) для создания тестовых сценариев при тестировании конформности в рамках телекоммуникационных архитектур, GDMO для информационных моделей в рамках архитектуры ТМN и др. Проблемы стандартизации, развития и совместного использование SDL, MSC и этих языков для спецификаций и описаний новых телекоммуникационных Архитектур составляют предмет настоящего параграф|. — Как уже отмечалось во введении, данный параграф может быть пропущен без ущерба для понимания дальнейшего материала книги. Для читателя, готового, несмотря на сделанное предупреждение, продолжить рассмотрение этой чрезвычайно важной задачи стандартизации методов разработки телекоммуникационных систем, полезно прежде определить, какая стандартизация в этом параграфе рассматриваться не будет.

А именно, не будет рассматриваться используемая российскими НИИКБ система ГОСТов ЕСКД, традиционно сопровождавшая НИОКР в областях телекоммуникации и вычислительной техники вплоть до присвоения литеры 01 «посмертно» большинству из них и породившая целый ряд трудно объяснимых сегодня силлогизмов типа «калькодержатель» (насилие не только над языком, но и над здравым смыслом). С другой стороны, необходимость стандартизации в электросвязи была осознана еще в 1865 г., когда был основан Международный союз электросвязи -МСЭ (в книге используется и английская аббревиатура этой международной организации - ITU - International Telecommunications Union). В настоящее время ITU является агентством Организации Объединенных Наций и состоит из трех секторов: сектора стандартизации электросвязи (ITU-T), сектора радиосвязи и сектора развития телекоммуникаций.

В области вычислительной техники стандартизация началась со стандартов де-факто и в 50-х годах привела к повсеместному использованию 80-колонных перфокарт в качестве единого для всех систем носителя данных. В 60-х годах была достигнута совместимость накопителей на магнитных лентах и дисках с интерфейсом IBM-360. Затем произошло резкое смещение акцентов на программное обеспечение и наряду со стандартами на операционные системы, программные оболочки и интерфейсы начали разрабатываться стандартные языки спецификаций и описаний. Три из них достигли статуса международных стандартов: SDL, разработанный ITU в 70-х годах, Estelle (IS09074) и LOTOS (IS08807), стандартизованные ISO в 1988 г.

Интенсивное взаимопроникновение информационных (компьютерных) и телекоммуникационных технологий (столь бурно развивающееся, что уже сегодня невозможно однозначно ответить на вопрос: не является ли ИНТЕРНЕТ сетью связи общего пользования?) существенно меняет сложившиеся представления о стандартизации спецификации протоколов сигнализации, все более и более преобразуя эти протоколы в чисто программные интерфейсы, строящиеся в терминах идеологии открытых распределенных процессов (ODP).

При этом интересно отметить, что зарубежная телекоммуникационная промышленность традиционно ориентировалась на стандарты де юре, а зарубежная же компьютерная промышленность - на стандарты де-факто. Единодушная техническая политика отечественных предприятий связи и вычислительной техники по этому вопросу уже упоминалась выше.

К необходимости единодушия (правда, не такого) приводит и наблюдающаяся тенденция к интеграции различных телекоммуникационных архитектур. Соответственно возрастает необходимость единообразия но­таций, описывающих различные архитектуры. Впрочем, уже сегодня ни один язык ни в одной архитектуре не используется изолированно. Так, например, TTCN используется совместно с ASN.l, т.к. само тестирование конформности предполагает структуру PDU (Protocol Data Unit), написанную на ASN.l. По совместному использованию SDL и ASN.l уже принята ITU-T рекомендация Z. 105, а по MSC и SDL - рекомендация Z. 120.

Итак, для описаний современных телекоммуникационных архитектур в рамках ITU используются следующие языки: SDL, MSC, ASN.l, TTCN и GDMO. Этот перечень может быть дополнен языком IDL (Interface Definition Language), разрабатываемым OMG (Object Management Group) и ISO, языком ODL (Object Definition Language) из TINA-C, который является расширением IDL и поддерживает современные концепции объектов с разнообразными интерфейсами, групповых объектов, потоковых интерфейсов и описаний QoS (Quality of Service).

Более того, и сам перечень, и каждый язык в нем не перестают развиваться и дополняться. Идеальным вариантом было бы при создании каждой новой архитектуры или, еще лучше - в начале проекта, направленного на создание новой архитектуры, заранее проанализировать, какие протоколы сигнализации и интерфейсы потребуется специфицировать в рамках этой архитектуры и, соответственно, подготовить адекватные языковые средства. Но это вряд ли реально, т.к. для определения интерфейсов уже сразу нужно зафиксировать какие-то конкретные языковые нотации.

Существенно также, что перспективные проекты, например, TINA-С, уже не связываются с какими-либо конкретными архитектурами типа TMN или IN. Протоколы взаимодействия в этих проектах в основном выражаются в терминах прикладных программных интерфейсов (API - Application Programm Interface).

Математические основы для упомянутых в данной главе стандартных средств спецификаций и описаний телекоммуникационных систем составляют следующие общие модели из теории конечных автоматов (расширенных конечных автоматов, машин сообщений), сетей Петри, алгебраических моделей абстрактных типов, теории множеств, логики предикатов, временной логики и др.

Одним из основных используемых совместно с SDL языков является ASN.l (Abstract Syntax Notation 1). Он предназначен в основном для спецификации данных и является признанным стандартом для описания данных в протоколах ISO, строящихся в соответствии с моделью взаимодействия - открытых систем (ВОС, или OSI согласно английской аббревиатуре) и рекомендаций ITU-Т серии X. Например, ASN.l широко ис­пользуется в рекомендациях Х.400 и Х.500, при описании протоколов ROSE (Remote Operations: Protocol Specifications, рекомендация Х.229) и ТСАР (Transaction Capabilities, рекомендации Q.771-775 и глава 10 данной книги).

ASN. 1 состоит из двух частей: описания композиционных типов данных и преобразования этих данных в битовые потоки для передачи (правила кодирования/декодирования). Сегодня фактически существуют две модификации языка ASN. 1. Первая модификация определена рекомендацией Х.208, а вторая - рекомендациями Х.680-683, которые должны были заменить Х.208, но до сих пор сосуществуют на равных с ней.

С учетом совместного использования с SDL в контексте данной книги особенно важна рекомендация Z.I 05, основными принципами которой стали следующие тезисы:

• SDL используется для описания поведения и структуры системы, тогда kbkasn. 1 используется для описания данных в дополнение к данным SDL. Данные ASN. 1 используются для спецификации сообщений и порядка их кодирования.

• Версия ASN.l, используемая в Z.I 05, основана на рекомендации Х.680 без расширений, содержащихся в рекомендациях Х.681 -Х.683.

• При совместном использовании необходимо модифицировать и SDL и ASN.l. В SDL наибольшие изменения - это расширения в лексических правилах. Используемый в Z.I 05 язык ASN.l не имеет различий между знаками верхнего и нижнего регистров клавиатуры, и дефис «-» заменяется подчеркиванием «_», что необходимо для обес­печения совместимости этих двух языков.

Значительный интерес представляют графические нотации GDMO (Guidelines for the Definition of Managed Objects). Эти языковые средства определены рекомендацией Х.722 для описания управляемых объектов в TMN (Telecommunications Management Network) и также упоминаются в главе 10 данной книги.

Имеет смысл остановиться несколько более подробно на языке современных протокол-тестеров TTCN (Tree and Tabular Combined Notation). Язык комбинированных древовидных и табличных нотаций TTCN был разработан в ISO для абстрактного описания режимов функционирования и обмена сигналами между тестируемой протокольной реализацией и тестирующей системой. Протокол может быть представлен в форме древовидного графа, отображающего реакции нате или иные входные (в частности - тестовые) сигналы. Как следует из названия, язык TTCN использует табличные представления таких деревьев для описания динамики поведения протоколов, а также дополнительные таблицы для записи самих тестовых сценариев.

Тестер представляет собой тестовый комплект, выполняющий тесты и наблюдающий за результатами. TTCN базируется на концепции верхнего и нижнего тестеров. Набор тестирующих компонент, взаимодействующих с тестируемой системой (IUT - Implementation Under Test) в точках управления и наблюдения (РСО - Point of Control and Observation) через интерфейс нижнего уровня, называется нижним тестером (LT - Lower Tester). Набор тестирующих компонент, взаимодействующих с тестируемой реализацией (IUT) в точках управления и наблюдения (РСО) через интерфейс верхнего уровня, называется верхним тестером (UT - Upper Tester).

Система должна содержать, по крайней мере, одну из тестирующих компонент. Эта компонента будет являться мастер-компонентой (МТС -Master Test Component), ответственной за координацию и управление ходом теста и за вынесение окончательного вердикта. Связь между тестирующими компонентами каждого из тестеров осуществляется через точки координации (СР - Coordination Points). Координация между верхним и нижним тестером осуществляется посредством процедур координации тестирования (TCP - Test Coordination Procedures).

Нижний тестер является более сложным, чем верхний, вследствие необходимости выполнения им функций управления и наблюдения за блоками данных протокола (PDUs - Protocol Data Units). Блоки данных протокола являются частью абстрактных примитивов (ASP - Abstract Service Primitives), которые нижний тестер посылает и принимает во время выполнения теста. Фактически в любой момент времени нижний тестер, исполняя какой-то тест, реализует определенную часть соответствующего протокола.

Для проведения тестирования конкретной системы необходимо специфицировать последовательность взаимодействий или тестовых событий, которые следует подвергнуть наблюдению и контролю в этой системе.

Последовательность таких событий, полностью специфицирующих цель проведения теста, называется тестом (test case). Набор тестов для определенного протокола называется тестовым комплектом (test suite).

Как уже отмечалось выше, TTCN представляет собой нотацию, раз­работанную для спецификации тестов на абстрактном уровне. Абстрактные тесты содержат всю информацию, необходимую для полной спецификации цели проведения теста (ТР - Test Purpose) в терминах блоков данных протокола, который данная система должна реализовывать в процессе функционирования. Абстрактные тесты не содержат информации, специфичной для конкретной системы. Однако сама нотация как таковая не является абстрактной; определение TTCN достаточно точно, как в части синтаксиса, так и в части семантики операций, что позволяет приблизить TTCN к языку программирования.

На рис. 2.21 показано соответствие TTCN семиуровневой модели взаимодействия открытых систем (OSI), согласно которой требуются спецификации тестов в терминах абстрактных примитивов ASP уровня (N-1), а также в терминах абстрактных примитивов ASP уровня N и блоков данных протокола уровня N. Для того, чтобы удовлетворять таким требованиям, TTCN должен обеспечивать как минимум: возможность спецификации абстрактных примитивов, которые должна принимать или посылать тестируемая система; возможность спецификации блоков данных протокола, которые являются частью абстрактных примитивов; возможность спецификации последовательности, в которой абстрактные примитивы посылаются или принимаются в определенной точке управления и наблюдения (РСО).

Для выполнения перечисленных функций TTCN позволяет:

• декларировать типы абстрактных примитивов и блоков данных протокола;

• декларировать точки контроля и наблюдения;

• специфицировать реальные абстрактные примитивы и блоки данных протокола;

• специфицировать различные варианты поведения системы. Рассмотренные в первом параграфе данной главы методы спецификации протоколов на SDL используют для описания их поведения диаграммы состояний. Однако в связи с тем, что тестирование соответствия

 

Рис.2.21. Общая архитектура тестирования TTCN

(конформности) в основном ориентировано на наблюдение и управление последовательных взаимодействий в точке интерфейса между уровнями модели взаимодействия открытых систем (в точке доступа к услуге), целесообразно также специфицировать поведение тестируемой системы и в виде дерева, имеющего ветви для всех возможных вариантов последовательностей взаимодействий, которые могут существовать между двумя данными состояниями протокола.

В TTCN такое дерево взаимодействий называется деревом поведения. Структура дерева представляется посредством увеличивающихся уровней отступов для показа продвижения по дереву относительно времени (рис. 2.22).

Узел дерева называется линией поведения. Линия поведения содержит следующие компоненты:

• номер линии,

• метку,

• строку описаний,

• ссылку на ограничения,

• вердикт,

• комментарий линии поведения.

Линии поведения специфицируются в специальных таблицах, назы­ваемых таблицами динамического поведения.

 

Рис.2.22. Представление дерева TTCN посредством сдвига

 

Поведение тестируемой системы (например, прием или посылка абстрактных примитивов) описывается при помощи описаний TTCN. Описания бывают трех типов:

• события,

• действия,

• квалификаторы.

События. Некоторые описания TTCN могут оказаться успешными или неуспешными в зависимости от наступления тех или иных событий. Существуют два типа событий: входные-события и таймерные события. Пример входных событий - приход абстрактного примитива в определенной точке управления и наблюдения. Таймерное событие представляет собой истечение таймера, специфицированного протоколом. Для событий в TTCN используются следующие описания:

. RECEIVE,

. OTHERWISE,

. TIMEOUT.

Действия. Некоторые описания всегда будут успешными. Такие описания называются действиями, которые исполняются тестовой системой. Предполагается, что они всегда исполняются успешно. Для действий в TTCN используются следующие описания:

. SEND,

. IMPLICIT SEND,

. ASSIGNMENTJJST,

. TIMER_OPERATION,

. GOTO.

Квалификаторы. Строки описаний могут включать описания квалификаторов, то есть булевские выражения. Никакие события не могут совпасть и никакие действия не будут исполнены, пока значение квалификатора не станет равным TRUE.

Как уже отмечалось выше, TTCN был разработан с привязкой к абстрактному синтаксису ASN.l (ISO/IEC 8824:1990). Однако не существует обязательной связи между типами, используемыми в TTCN и в ASN.l. Это позволяет конструировать типы данных, абстрактные примитивы ASP и блоки данных протокола PDU и без использования ASN.l, если разработчик теста не желает этого (например, для протоколов низкого уровня,, для спецификации которых обычно не используется ASN.l). Однако здесь типы данных TTCN рассматриваться не будут.

TTCN поддерживает асинхронную модель связи. Связь между тестовыми компонентами ТС и тестируемой системой ЮТ обеспечивается через точки управления и наблюдения (PCOs - Points of Control and Observation). Связь между самими тестовыми компонентами осуществляется через координационные точки (CPs - Coordination Points).

Для описания модели связи используется система с очередями со сле­дующими свойствами:

• каждая точка РСО/СР имеет две бесконечные очереди FIFO: одна очередь для SEND и одна очередь для RECEIVE,

• ровно два объекта должно быть подсоединено к одной точке РСО или СР,

• очередь SEND одного-объекта является очередью RECEIVE другого объекта, и наоборот.

Описание SEND позволяет создателю теста описать необходимость:

передачи ASP определенного типа через данную точку РСО. Описание SEND обозначается следующим образом: РСО_Identifier! ASP_Identifier.

Описание RECEIVE позволяет создателю теста описать необходимость приема абстрактного примитива ASP определенного типа в данной точке контроля и наблюдения РСО. Описание RECEIVE обозначается PCO_Identifier? ASP_Identifier.

ASP задаются в соответствии со стандартным описанием услуги, предоставляемой данным уровнем модели OSI. PDU описываются определениями, заданными в спецификации конкретного протокола. В случае необходимости использования нестандартных PDU они должны быть определены соответствующей таблицей.

Язык TTCN непосредственно связан с рассматриваемыми в главе 11 протокол-тестерами, что и обусловило несколько более подробное (хотя, разумеется, отнюдь не достаточное) его описание в этой главе.

И в заключение настоящего параграфа следует пояснить еще один упомянутый в данной главе подход. Это техника объектного моделирования ОМТ, которая была предложена Джеймсом Рунбаугом в Риме в 1991 ни включает в себя три аспекта системного анализа: объектное моделирование, динамическое моделирование и функциональное моделирование.

Модель объекта ОМТ включает два вида диаграмм: диаграммы класса, которые основаны на хорошо известной системе обозначений взаимо­отношений логических объектов, расширенной объектно-ориентированными концепциями операций и наследования свойств, а также диаграммы инстанций, представляющие собой моментальные снимки системы.

Динамическая модель ОМТ также строится из диаграмм двух видов:

диаграмм событий и диаграмм перехода состояний.

функциональная модель состоит из схем информационных потоков, которые основываются на широко известной системе обозначений структурного анализа.

Прослеживаются следующие связи между объектной, динамической и функциональной моделями. В системном анализе объектная модель является центральной моделью ОМТ. Динамическая модель улучшает объектную модель тем, что определяет: когда устанавливаются и удаляются классы, когда вызываются операции с классами, когда имеется доступ к атрибутам и когда создаются, используются и удаляются связи. Функциональная модель предлагает новый взгляд на услуги, обеспечиваемые объектной моделью, путем объединения единичных операций с классами в более крупные процессы или, наоборот, путем детализации сложных операций с классами разбиением на более простые процессы.

ОМТ, как это отмечается самими авторами, не очень подходит для архитектурного проектирования в тестирования, но удобна для разработок информационных систем, примером которой може1 служить база ин­формации СОТСБИ, рассмотренная в последнем параграфе главы 11.

 


ЛИТЕРАТУРА

 

1. Аваков Р.А., Кооп М.Ф., Лившиц Б.С., Подвидз М.М. Городские координатные автоматические телефонные станции и подстанции. М.: Связь, 1971.

2. Аваков Р.А., Лившиц Б.С., Подвидз М.М. Координатные АТС. М.: Связь, 1966.

3. Аваков Р.А., Шилов О.С., Исаев В.И. Основы автоматической коммутации. М.: Радио и связь, 1981.

4. Агафонов В.Н. Спецификация программ: понятийные средства и их организация. Новосибирск: Наука, 1987.

5. Апостолова Н.А., Арцишевский В.В., Гольдштейн Б.С., Дымарский Я.С., Сибирякова Н.Г. Научно-технические аспекты организации сертификационных испытаний АТС местных сетей. Электросвязь, 1996.—№10.

6. Архангельская А.А., Ершов В.А., Нейман В.И. Автоматическая коммутация каналов связи. М.: Связь, 1970.

7. Арцишевский В.В. и др. Промежуточные регистры АТС для исходящей междугородной связи по заказно-соединительным линиям. М.: Связь, 1971.

8. Бакалейщик Ф.Б, Брунина Е.А., Зайончковский Е.А. и др. Автоматическая междугородная и сельская телефонная связь. Под ред. Зайончковского Е.А. М.: Связь, 1976.

9. Башарин Г.П., Харкевич А.Д., Шнепс М.А. Массовое обслуживание в телефонии. М.: Наука, 1968.

10. Белоус Б.П. Высокочастотная связь по линиям электропередачи. М.:Госэнергоиздат, 1952.

11. Берглунд С. Новые системы АТС. М.: Связьиздат, 1956.

12. Березович Л.А., Зайончковский Е.А., Узлов Е.Н. Модернизированная аппаратура полуавтоматической связи одночастотной системы для внутриобластных сетей АМСО-60-У. М.: Связьиздат, 1962.

13. Берлин А.Н. Алгоритмическое обеспечение АТС. М.: Радио и связь, 1986.

14. Бернштейн С.С. К анализу алгоритма АТС. Сборник трудов НИИТС,1963.—№12.

15. БлэкЮ. Сети ЭВМ: протоколы, стандарты, интерфейсы. М.: Мир, 1990.

16. Брукс Ф.П. Как проектируются и создаются программные комплексы. Мифический человеко-месяц: очерки по системному программированию. М.: Наука, 1979.

17. Булгак В.Б., Варакип Л.Е., Ивашкевич Ю.К., Москвитин В.Д., Оснпов В.Г. Концепция развития связи Российской Федерации. М.: Радио и связь, 1995.

18. Бухгейм Л.Э., Максимов Г.З., Пшеничников А.П. Автоматическая сельская телефонная связь. М.: Связь, 1976.

19. Вайрадяи А.С., Коровин А.В., Удалов В.Н. Эффективное функционирование управляющих мультипроцессорных систем. М.: Радио и связь, 1984.

20. Васильева Л.С. и др. Усовершенствованные городские координат­ные АТС типа АТСК-У. Принципы построения. М.: Радио и связь, 1986.

21. Васильченко А.И., Денисьева О.М., Жарков М.А., Стоянов М.Н., Урм Э.Э., Юнаков П.А. Система телефонной сигнализации по общему каналу (система ОКС). М.:Связь, 1980.

22. Ведомственные нормы технологического проектирования. Проводные средства связи. Часть 2. Станции городских и сельских телефонных сетей. М.: Связь, 1980.

23. Вемян Г.В. Качество телефонной передачи и его оценка. М.: Связь. 1970.

24. Вознесенский Б.Н., Зайончковский Е.А., Прытикова З.И., Соловьев Ш.Г. Аппаратура полуавтоматической междугородной телефонной связи. Связьиздат, 1957.

25. Вознесенский Б.Н., Логинов Д.Ф., Гранат М.Б. Промежуточное оборудование для совместной работы АТС машинной и шаговой систем. Связьиздат, 1954.

26. Гантер Р. Методы управления проектированием программного обес­печения. М.: Мир, 1981.

27. Голубев А.Н., Иванов Ю.П., Левин Л.С. Аппаратура ИКМ-ЗОА. Под ред. Иванова Ю.П. и Левина Л.С. М.: Радио и связь, 1983.

28. Голубев А.Н., Лугов М.Ф. Принципы построения ГТС на базе АТС с программным управлением. Вестник связи, 1987. —№8.

29. Гольдштейн Б.С. Технологические аспекты проектирования программного обеспечения цифровых систем коммутации. Электросвязь, 1988.—№10.

30. Гольштейн Л.М., Сосонко С.М. Организация междугородной связи на местных телефонных сетях. Связь, 1976.

31. Гольштейн Л.М., Сосонко С.М. Сельско-пригородные узлы ГТС. М.: Связь, 1973.

32. Григорьев Г.Л. Вопросы совместной работы городских АТС разных систем. Связьиздат, 1961.

33. Гринбаум И.И. и др. Аппаратура автоматического определения но­мера (АОН). М.: Связь, 1973.

34. Громов Г.Р. Программирование:ремесло, наука, искусство, техно­логия. Микропроцессорные средства, 1985. — №1.

35. Грязное Ю.М., Сагалович Л.И. Городские телефонные станции. М: Высшая школа, 1983.

36. Гуревич В.Э., Лопушнян Ю.Г., Рабинович Г.В. Импульсно-кодовая модуляция в многоканальной связи. М.: Связь, 1973.

37. Гурии А.С., Дроздов Л.В., Могилевский М.М. Телефония. Вое-низдат, 1963.

38. Гюнтер И., Сивере М. Цифровая связь. Техника и организация. Издание Электротехнического института связи им. проф. М.А. Бонч-Бруевича, СПб, 1993.

39. Делтон X. Усовершенствуй свой телефон. Пер.с англ. А.Ковеля под ред.А.Молодяну. М.: Бином, 1995.

40. Дженнингс Ф. Практическая передача данных: Модемы, сети и протоколы. М.: Мир, 1989.

41. Дубровский Е.П. Абонентские устройства ГТС. Справочник. 4-е изд., перераб. и доп. М.: Радио и связь. 1986.

42. Дюфур С.Л., Лутов М.Ф., Скребов Д.Д. Координатные АТС же­лезнодорожного транспорта. 2-е изд., перераб. и доп. М.: Транспорт, 1980.

43. ЕфретоваЕ.И. Системы электронной коммутации. М.: Связь, 1968.

44. Жарков М.А., Кучерявый А.Е. Система общеканальной сигнализации №7. Вестник связи, 1997. —№1.

45. Жданов И.М., Кучерявый Е.И. Построение городских телефонных сетей. М.: Связь, 1972.

46. Жогло В.О., Иванов А.А., Иванов А.П. Квазиэлектронная АТС «Квант». М.: Радио и связь, 1987.

47. Зайончковский Е.А., Пшеничников А.П., Романцов В.М. Автоматическая междугородная телефонная связь. М.: Радио и связь, 1984.

48. Захаров Г.П., Симонов М.В., Яновский Г.Г. Службы и архитектура широкополосных цифовых сетей интегрального обслуживания. Электронные знания. ТЭК. — М.: Эко-Трндз. 1993. — Т.42.

49. Иванова А.А., Кристальный B.C., Фалунин А.Ф. Междугородные телефонные станции. Связьиздат, 1958.

50. Иванова О.Н., Попова А.Г. Электронные и квазиэлектронные АТС. М.:Знание, 1979.

51. Ильин O.K., Розенштейн Н.И. Проектирование международных телефонных станций. М.: Связь, 1973.

52. Китаев Е.В. Телефония. Основы телефонии и телефонных станций ручного обслуживания. Связьиздат, 1958.

53. Клейнрок Л. Вычислительные системы с очередями. М.: Мир. 1979.

54. Ковалева В.Д., Калинина B.IL, Козлов Д.П. Телефония и телефонные станции. М.: Связь, 1967.

55. Коваленков В.И. Телефония. Центральные городские и междугородные телефонные станции. Л.: Издание Кубуч и издательский комитет электротехнического института, 1925.

56. Колбасова В.И., Меламуд Э.А. Система линейной сигнализации ГТС: код передачи линейных сигналов по двум выделенным сигнальным каналам. Электросвязь, 1989.—№1.

57. Коммутируемая телефонная сеть общего пользования (ТФОП). Термины и нормативные документы. Москва, 1988.

58. Кооп М.Ф. Автоматические телефонные станции декадно-шаговой системы завода «Красная заря» (ГАТС-47). Одесса, 1949.

59. Кооп М.Ф., Маркович А.Я., Романцов В.М. и др. Городские телефонные станции. М.: Связь, 1974.

60. Крупнов А.Е., Соколов Н.А. Новые телекоммуникационные технологии в отрасли связи. «Электросвязь», 1995. —№11.

61. Лазарев В.Г. Интеллектуальные цифровые сети. М.: Финансы и статистика, 1996.

62. Левин Л.С., Плоткин М.А. Цифровые системы передачи информации. М.: Радио и связь, 1982.

63. Лезерсон В.К. Связь АТС-47 с междугородной и учрежденческими телефонными станциями. Связьиздат, 1953.

64. Лившиц B.C., Григорьев ГЛ. Основы телефонии и телефонные станции сельской и междугородной связи. М.: Связь, 1966.

65. Лившиц Б.С., Мельников К.П., Фролова А.А. Расчет числа приборов АТС К-100/2000. М.: Связь, 1968.

66. Лившиц Б.С., Новиков Г.А., Фарафонов Л.С. Сельские автоматические телефонные станции. М.: Государственное издательство литературы по вопросам связи и радио, 1958.

67. Лившиц Б.С., Фидлин Я.В., Харкевич А.Д. Теория телефонных и телеграфных сообщений. Массовое обслуживание. Потоки. Теория очередей. Информационные сети. Моделирование. Коммутация. М.: Связь, 1971.

68. Лившиц Б.С., Ханин Г.Б., Семенов И.И. Сельские АТС. М.: Связь, 1975.

69. Лийк Р.Б., Ройтенберг Е.М. Автоматическая телефонная станция декадно-шаговой системы АТС-54. Связьиздат, 1959.

70. Лутов М.Ф., Жарков М.А., Юнаков П.А. Квазиэлектронные и электронные АТС. М.: Радио и связь, 1988.

71. Максимов Г.З., Пшеничников А.П., Харитонова Е.Н. Автомати­ческая сельская электросвязь. М.: Радио и связь, 1985.

72. Мартьянов Б.К. Междугородные телефонные станции. Связьиздат, 1942.

73. Мартьянов Б.К. Телефонная коммутация. М.: Связь, 1972.

74. Мархай Е.В., Барицкий И.А. Автоматическая телефония. Связьиздат, 1950.

75. Мархай Е.В., Рогинский В.Н., Харкевич А.Д. Автоматическая телефония. Связьиздат, 1960.

76. Меламуд Э.А., Колбасова В.И. Батарейный способ передачи линейных сигналов. Электросвязь, 1989.—№11.

77. Меламуд Э.А., Шапиро С.Б. Сигналы взаимодействия на местных телефонных сетях. М.: Связь, 1970.

78. Меламуд Э.А., Шапиро С.Б., Еликоева Э.К. Организация межстанционной связи АТС К-100/2000. М.: Связь, 1970.

79. Метельский Г.Б. Координатные АТС. Связьиздат, 1961.

80. Мовшович И.Х. и др. Городская координатная телефонная подстанция ПСК-1000. М.: Связь, 1968.

81. Подбельский В.Н. Почта, телеграф, телефон. М.: Госиздат, 1927.

82. Покровский Н.Б. Автоматическая междугородная телефонная станция типа ARM-20. ЛЭИС, 1976.

83. Прагер Э., Трика Я. Электронные телефонные станции. Перев. с чешек. Под ред. Лазарева В.Г. М.: Связь, 1976..

84. Рогинский Н.Р., Збар Н.Р. Железнодорожные автоматические телефонные станции. Трансжелдориздат, 1948.

85. Розенштейн И.И., Портнов М.П. Междугородные телефонные станции. М.: Радио и связь, 1982.

86. Руководящий документ по общегосударственной системе автоматизированной телефонной связи (ОГСТфС).М.: Радиоисвязь, 1982.

87. Руководящий документ по общегосударственной системе автоматизированной телефонной связи (ОГСТфС). М.: Прейскурантиздат 1988.

88. Самуилов К.Е. Система сигнализации №7 - ключевой элемент современных цифровых сетей связи. Сети, 1996. —№11.

89. Соколов Н.А. Эволюция местных телефонных сетей. Изд. ТОО «Типография «Книга», Пермь, 1994.

90. Тарасова Ц.Л., Корнеев А.С. Системы передачи ГТС. М.:Радио и связь, 1981.

91, Фаергеманд О. (Дания), Сарма А. (Германия), Гольдштейн Б.С. (Россия). SDL-92: Анализ современного состояния. Электросвязь, 1995.—№9.

92Фарафонов Л.С., Волкова К.И., Коблец Я.Г., Ройтменберг Е.М. АТС декадно-шаговой системы (АТС-47). М.: Связьиздат, 1951.

93Финклер И.Е. Электроакустические характеристики телефонного тракта. Связьиздат, 1961.

94. Хиллс М.Т. Принципы коммутации в электросвязи. М.: Радио и связь, 1984.

95. Через Запад на Восток - интервью с Министром связи Российской Федерации В.Б. Булгаком. Телевестник, 1992. —№1.

96. Шарипов Ю.К. Электронная автоматическая телефонная станция МТ-20. М.: Радио и связь, 1992.

97. Шляхтер М.И., Бурбанова Э.Н., Полякова М.И. Аппаратура сетей связи. Под ред. Шляхтера М.И. М.: Связь, 1980.

98. Шнепс М.А. Системы распределения информации. Методы расчета. М.: Связь, 1979.

99. Штагер В.В. Электронные системы коммутации. М.: Радио и связь, 1983.

100. Эйдельман Л.Я. Построение релейных соединителей АМТС. Связь, 1967.

101. Эйдельман Л.Я., Сасонко С.М. Нумерация абонентов на автома­тизированной телефонной сети Советского Союза. Связь, 1964.

102. Belina R, Hogrefe D., SarmaA. SDL-with Applications from Protocol Specification. Prentice-Hall International. London, 1991.

103. Black Uyless D. Physical layer and related protocols. IEEE Computer Society Press, 1996.

104. Boehm B.W. A Spiral Model of Software Development and Enhancement. Computer, 1988.—Vol.21.—No-5.

105. Chapuis R.J. Present status and trends in digital switching. Telecommunication Journal, 1993. —60. —No.4.

106. David M. Piscitello, A. Lyman Chapin. Open Systems Networking, TCP/IP and OSLAddison-Wesley, 1993.

107. ETSI European digital cellular telecommunication system: Mobile application part specification. ETS 300 044. ETSI. SophiaAntipolis, 1992.

108. ETSI/MTS Methods for Testing and Specification: Use of SDL in European Telecommunication Standards - Rules for testability and facilitating validation. ETS 300 414. ETSI. SophiaAntipolis, 1994.

109. EU CTS Pro], no. 46: Formal description techniques: SDL, LOTOS, CEC DG XIII, Telecommunications, Information Industries and Innovation. Information Industries and Innovation. Information Sheet on Conformance Testing Services (CTS). Brussels, 1992.

110. Faergemand 0., SarmaA. SDL-An Established Language with New Features and Applications. — ISS'95 World Telecommunications Congress, Berlin, April 1995.—Vol.1.

111. Gerard J. Hoizmann. Design and Validation of Computer Protocols, Prentice-Hall, 1991.

112. Goldstein В. and Sloutsky L. Introduction of Modern Telecommunications Equipment in Russia and the New Republics. IEEE Communications magazine, 1995.—Vol.33.—No.7.

113. Goldstein B. Switching EquipmentAdaptation for Russian Public Telephone Network. IEEE Journal on Selected Areas of Communications, 1994.—Vol.12.—No.7.

114. ISO/IEC: Recommendation X.904/ISO 10746-4: Basic Reference Model of Open Distributed Processing - Part 4: Architectural semantics. Turin, 1993.

115. ITU-T: Message transfer part (MTP). Recommendation Q.701-Q.707. Signalling connection control part (SCCP) of Signalling System No.7. Recommendation Q.711-Q.714. Functional description ofthe ISDN user part of Signalling System #7. Recommendation Q.761. Geneva, 1993.

116. ITU-T: Specification and Description Language. Recommendation Z.I 00. Geneva, 1992.

117. Jans H. Queueing System with Clocked Operations and Priorities. 1 Oth International Teletraffic Congress. Montreal, 1983.

118. Jung M.M. Busy period distribution in an SPC processor having a clock-pulse operated gate. Philips Telecommunications, 1991.—Vol.9.—No.2.

119. Kessler Garry C., Southwick Peter V. ISDN concepts, facilities and services. 3-d edition. McCawHill, 1996.

120. Kramer W., Langenbach-Belz M. Approximate Formulae for the Delay in the Queueing System GI/G/1. 8th International Teletraffic Con­gress. Melbourne, 1976.

121. Linn R.J. Conformance Evaluation Methodology and Protocol Testing. IEEE Journal on Selected Areas in Communications, 1989.—Vol 7 — No.7.

122. Manterfield R.J. Common-Channel Signalling. Peter Peregrinus Ltd._ London, 1991.

123. OIsen A., Faergemand 0., Moller-Pedersen В., Reed R., Smith J.R.W. Systems Engineering Using SDL. Elsevier Science Publishers — North-Holland, Amsterdam, 1994.

124. Pearce J. Gordon. Telecommunications Switching. Plenum Press. — N.Y. and London, 1994.

125. Redl Siegmund M., Weber Matthias K., Oliphant Malcolm W. An Introduction to GSM. Artech House. Boston, London, 1995.

126. Russell Travis. Signalling system #7. McGraw Hill, 1995.

127. Schwartz M. Computer Communication Networks: Design and analysis. Prentice Hall, New Jersaj, 1977.

128. Turner Kenneth J. (Ed.), Using Formal Description Technique: An Introduction to ESTELLE, LOTOS and SDL. John Willey & Sons, 1993.

129. Walters Rob. Computer Telephone Integration. Artech House, Boston, London,1996.


Б.С. Гольдштейн родился в J 1951 году. После окончания в 1973 году ЛЭИС им. проф. М.А. Бонч-Бруевича работает в Ленинградском отраслевом научно-исследовательском институте связи (ЛОНИИС). Начальник научно- исследовательского отделения и заместитель директора института по научной работе,

В 1982 г. защитил кандидатскую диссертацию «Исследование и разработка телефонной операционной системы электронного узла коммутации», а в 1994 г. — докторскую диссертацию «Численные методы анализа и проектирования программного обеспечения систем коммутации».

Лауреат премии «Факел Бирмингема» (Birmingham Torch Award, International Academy ALBA, USA). Являлся редактором выпуска IEEE JSAC, 12, 7 и членом программного комитета Международного конгресса по телетрафику (ITC-15, Washington). Академик МАИ. Член Исследовательской комиссии 10 «Языки программирования» сектора стандартизации Международного союза электросвязи (бывшего МККТТ). Автор более ста печатных работ.

Гольдштейн Борис Соломонович СИГНАЛИЗАЦИЯ В СЕТЯХ СВЯЗИ

Компьютерная верстка М. А. фрост, В. В. Мелешкин ИБ№2804 ЛР№ 010164 от 29.01.97

Подписано в печать 29.07.97.

Формат 70 х 100 Ул.

Бумага офсетная.

Гарнитура тайме. Печать офсетная.

Объем 27 печ. л. Усл. печ. л. 26,5.

Тираж 5000 экз. Зак №3241.

Издательство «Радио и связь», 101000 Москва, Почтамт, а/я 693

Санкт-Петербургская типография №1 ВО РАН 199034, Санкт-Петербург, ВО, 9-я линия, д. 12


Оглавление

 

Предисловие

Список сокращений

Глава 1

Принципы сигнализации в телефонных сетях

1.1. Исторические аспекты и основные понятия

1.2. Классификация протоколов сигнализации

1.3. Эволюция протоколов сигнализации

1.4. Специфические особенности российских систем сигнализации

Глава 2

Методология спецификации и описания систем сигнализации

2.1. Введение в sdl-ориентированную методологию

2.2. Сценарии протоколов сигнализации на языке MSC

2.3. Стандартизация методов спецификации и описания современных телекоммуникационных архитектур

Глава 3

Сигнализация по двум выделенным сигнальным каналам

3.2. Линейная сигнализация ГТС. Местный вызов

3.3. Линейная сигнализация ГТС. Входящий междугородный вызов

3.4. Сигнализация по универсальным соединительным линиям двустороннего действия

Исходящее местное соединение

Входящее местное соединение

Входящее междугородное соединение по СЛМ

Глава 4

Сигнализация по трехпроводным соединительным линиям

4.1. Основы батарейного способа сигнализации

4.2. Линейная сигнализация: местный вызов

4.3. Линейная сигнализация: входящий междугородный вызов

Глава 5

Одно- и двухчастотные системы сигнализации

5.1. Сигнализация токами тональных частот

5.2. Одночастотная система сигнализации 2600 Гц по исходящим заказно-соединительным линиям (зсл)

5.3. Одночастотная система сигнализации 2600 Гц по входящим междугородным соединительным линиям (СЛМ)

5.4. Одночастотная сигнализация на междугородных и ведомственных телефонных сетях

5.5. Одночастотная сигнализация 2100 или 1600 Гц для полуавтоматической внутризоновой связи

5.6. Двухчастотная сигнализация 1200 и 1600 Гц

5.7. Двухчастотная сигнализация 600 и 750 Гц

Глава 6

Многочастотные системы сигнализации

6.1. Сигнализация «импульсный челнок»

6.2. Сигнализация «импульсный пакет i»

6.3. Сигнализация «импульсный пакет 2»

Глава 7

Сигнализация по одному выделенному сигнальному каналу

7.1. Сигнализация кодом «норка»: местный вызов

7.3. Сигнализация по выделенному сигнальному каналу индуктивным кодом

Глава 8

Специальные процедуры обслуживания вызовов

8.1. Вмешательство телефонистки при занятости вызываемого абонента

8.2. Автоматическое определение номера вызывающего абонента

8.3. Запрос номера вызывающего абонента

Глава 9

Системы сигнализации мкктт

9.1. Системы сигнализации №1, №3, №4, №5

9.2. Система сигнализации Rl

9.3. Система сигнализации R2

Глава 10

Система общеканальной сигнализации №7

10.1. Введение

10.2. Подсистема передачи сообщений мтр

10.3. Подсистема SCCP

10.4. Подсистема ISUP

10.5. Подсистема возможностей т<

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...