Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Рисунок 7.9 – Схема электрометрического компенсатора




Рисунок 7. 9 – Схема электрометрического компенсатора

 

7. 3 Измерение постоянного тока

Метод непосредственной оценки. Амперметр включается последовательно в разрыв исследуемой цепи.

Последовательное включение амперметра с внутренним сопротивлением  в цепь с источником ЭДС  и сопротивлением  (сопротивление нагрузки и источника) приводит к возрастанию общего сопротивления и уменьшению протекающего в цепи тока.

Относительная погрешность  измерения тока

           (7. 9)

где - действительное значение тока в цепи до включения амперметра; - измеренное значение тока в цепи .

Отношение сопротивлений можно заменить отношением мощностей РАи Р  потребления соответственно амперметра и самой цепи:

                                                                          & = -(РА/Р)/(1 + PА/P).             (7. 10)

Погрешность измерения тем меньше, чем меньше мощность потребления амперметра по сравнению с мощностью потребления цепи , в которой осуществляется измерение. Поэтому амперметр, включаемый последовательно в цепь измерения, должен обладать малым сопротивлением, т. е. RA                                                               - 0.

Диапазон значений постоянных токов, с измерением которых приходится встречаться в различных областях техники, чрезвычайно велик (от токов 10 А до десятков и сотен тысяч ампер). Поэтому, естественно, методы и средства измерения их различны.

Измерение постоянного тока может быть выполнено любым измерителем постоянного тока: магнитоэлектрическими, электродинамическими, аналоговыми и цифровыми электронными амперметрами. При необходимости измерения весьма малых токов, значительно меньших тока полного отклонения, магнитоэлектрического измерителя, последний применяют совместно с усилителем постоянного тока. Усиления тока можно добиться при включении биполярных транзисторов по схеме с общим коллектором (эмиттерный повторитель), которая обеспечивает малое входное сопротивление усилителя.

Токи 10 - 10 А можно измерить непосредственно с помощью высокочувствительных магнитоэлектрических зеркальных гальванометров и гальванометрических компенсаторов.

Косвенное измерение тока. Кроме прямого измерения токов амперметрами возможно косвенное измерение токов с помощью образцовых резисторов, включаемых в разрыв цепи, и высокочувствительных измерителей напряжения. Измеряемый ток определяется Ix = Uo/Ro, где Uo - падение напряжения на образцовом резисторе , измеренное вольтметром, компенсатором постоянного тока.

Для получения минимальных погрешностей измерения сопротивление резистора  должно быть много меньше сопротивления цепи, в которой измеряется ток.

Измерение малых токов. Предельная чувствительность любого измерителя тока зависит от тока тепловых шумов, который тем меньше, чем больше внутреннее сопротивление измерителя. Для снижения этого тока до уровня 10 - 10 А в полосе частот от 0 до 0, 01-0, 1 Гц необходимо применять приборы с внутренним сопротивлением не менее сотен МОм, поэтому магнитоэлектрические гальванометры, гальванометрические компенсаторы, усилители на биполярных транзисторах относят к сравнительно низкоомным измерительным устройствам и, следовательно, они не могут использоваться при измерении токов менее 10 - 10 А. Для измерения малых постоянныx и медленно изменяющихся токов применяют пассивные преобразователи тока в напряжение в сочетании с чувствительным измерителем напряжения, имеющим очень высокое входное сопротивление (до сотен МОм) и малый уровень шумов. Максимально должны быть уменьшены также паразитные токи. К пассивным преобразователям относят преобразователи резистивные, емкостные, логарифмирующие.

В резистивных преобразователях тока в напряжение применяют высокоомные резисторы, значение сопротивления которых зависит от протекающего через резистор тока и изменяется во времени под влиянием температуры, влажности и т. п. Номинальные значения сопротивлений выпускаемых высокоомных резисторов до десятка МОм значительно зависят от приложенного напряжения, температурный коэффициент до и временной дрейф до нескольких процентов в год.

В узкой полосе частот высокоомный резистор может быть представлен в виде параллельного соединения сопротивления и емкости (порядка десятых долей пикофарады).

В емкостных преобразователях тока в напряжение скорость изменения напряжения) применяют конденсаторы с высококачественной изоляцией или специальные воздушные конденсаторы. Погрешность преобразования определяется погрешностью измерения емкости конденсатора и изменением емкости в процессе накопления заряда под влиянием медленной поляризации диэлектрика, поэтому емкость конденсатора зависит от частоты измеряемого тока. Для конденсатора характерны те же источники помех по току и напряжению, что и для резистора. Шунтирующее сопротивление конденсатора достигает Ом.

В логарифмирующих преобразователях тока в напряжение применяются электровакуумные и полупроводниковые приборы с вольтамперной характеристикой, описываемой логарифмической зависимостью. Сопротивление логарифмирующего элемента изменяется под действием измеряемого тока таким образом, что абсолютные приращения напряжения при одинаковых относительных приращениях тока остаются неизменными. В зависимости от типа логарифмирующего элемента и режима его работы приращение напряжения на декаду тока лежит в пределах от 50 мВ до нескольких вольт. Поведение логарифмирующего элемента как преобразователя малого тока в напряжение наиболее полно может быть описано его вольтамперной характеристикой. Логарифмирующий элемент шунтирован сопротивлением изоляции и емкостью между электродами. Влияние шунтирующего сопротивления проявляется в искажении вольтамперной характеристики. Полоса рабочих частот преобразователя определяется емкостью логарифмирующего элемента.

Измерители малых токов с резистивными и емкостными преобразователями тока в напряжение для усиления выходного напряжения преобразователя, необходимого для работы показывающих или регистрирующих устройств, используют электрометрические усилители (ЭМУ). Входная цепь ЭМУ может быть охарактеризована входным сопротивлением, входной емкостью, эквивалентным источником напряжения помех  и эквивалентным источником тока помех .

Значительное увеличение входного сопротивления ЭМУ получают за счет использования во входном каскаде электростатических измерительных механизмов, электрометрических ламп (с сеточным током до 10 - А), динамических конденсаторов (емкостных вибрационных преобразователей постоянного напряжения в напряжение высокой частоты); варикапов (полупроводниковых управляемых емкостей); МОП-транзисторов (полевых транзисторов с изолированным затвором); сегнетодиэлектриков.

Резистивные и емкостные преобразователи включаются в цепь параллельной отрицательной обратной связи электрометрического усилителя по напряжению.

Измерители с резистивными и емкостными преобразователями выполняются в виде комбинированных многопредельных приборов, предназначенных для измерения напряжения высокоомных источников и тока. Схема измерителя приведена на, рис. 7. 10. При измерении тока сигнал от источника подается на входные зажимы электрометрического усилителя с включенными в цепь обратной связи резисторами  или конденсаторами, коммутируемыми переключателем П.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...