Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Нормальный эффект Зеемана




Лабораторная работа № 16

Эффект Зеемана

Цель работы: Исследование эффекта Зеемана с помощью интерферометра Фабри-Перо. Определение магнетона Бора.

Теоретическая часть

Эффект Зеемана

Эффектом Зеемана называется расщепление уровней энергии атомов в магнитном поле, фиксируемое по расщеплению спектральных линий. Явление было обнаружено П. Зееманом в 1896 г. при исследовании спектра свечения паров натрия.

Исчерпывающее теоретическое объяснение эффекта Зеемана дается в рамках квантовой теории. Её основные положения, необходимые для полного понимания природы эффекта Зеемана, кратко изложены в Приложении 1.

Взаимодействие магнитного момента атома с магнитным полем приводит к приобретению атомом дополнительной энергии:

, (1)

где B – индукция магнитного поля; – проекция полного магнитного момента атома на направление магнитного поля. Индукция магнитного поля в электромагните, используемом в данной лабораторной работе, не превышает 1 Тл. В этом случае т.н. «слабого поля» можно представить в виде (см. Приложение 1):

, (2)

где – магнетон Бора, g – фактор Ланде, mJ – магнитное квантовое число, которое пробегает значений:

. (3)

Подставив в (1), найдём величину расщепления уровней энергии атома в магнитном поле:

. (4)

Таким образом, при наложении магнитного поля состояние атома с полным моментом импульса, определяемым квантовым числом J, расщепляется на состояние (как говорят, происходит снятие вырождения уровней мультиплета по магнитному квантовому числу). В результате при переходе электрона между этими состояниями вместо одной линии, наблюдавшейся в отсутствие поля, появляется группа компонент, частоты которых определяются выражением:

, (5)

где ħ – постоянная Планка, E 1 и E 2 – энергии атома, ω0 – частота линии в отсутствие магнитного поля. При этом картина расщепления оказывается симметричной относительно первоначально нерасщепленной линии. Все расстояния между соседними компонентами одинаковы, а их число может достигать нескольких десятков.

Количество линий определяется правилами отбора для квантового числа mJ, которые следуют из закона сохранения момента импульса для атомной системы:

(6)

· Линии, соответствующие , называются π-компонентами.

· Линии, соответствующие , называются σ-компонентами.

Условия наблюдения π- и σ-компонент определяются геометрией эксперимента:

· Эффект Зеемана называется поперечным, если оптическая ось экспериментальной установки перпендикулярна магнитной индукции (см. Рис.1). В этом случае π- и σ-компоненты линейно поляризованы во взаимно перпендикулярных направлениях.

· Эффект Зеемана называется продольным, если оптическая ось параллельна . В этом случае π-компонента отсутствует, а σ-компоненты поляризованы по кругу во взаимно противоположных направлениях.

Рис. 1 – Схема продольного и поперечного эффекта Зеемана

В работе изучается излучение атома кадмия Cd. Конструктивно это спектральная лампа с кадмием. В соответствии с возможностями интерферометра Фабри-Перо, используемого в установке, для исследования были выбраны следующие переходы:

· с длиной волны λ=643,847 нм; (нормальный эффект Зеемана);

· с длиной волны λ=508,588 нм; (аномальный эффект Зеемана).

Нормальный эффект Зеемана

Нормальным (простым) эффектом Зеемана называется расщепление спектральной линии на три компоненты (при наблюдении перпендикулярно магнитному полю). Он наблюдается у линий, соответствующих переходам между уровнями с одинаковым фактором Ланде g. В частности, такие линии характерны для перехода между синглетными уровнями, обладающими нулевым суммарным спиновым моментом ().

Рассмотрим переход в атоме кадмия (см. Рис.2, а). И в начальном, и в конечном состояниях: . Подставив эти значения в (5), получим:

, (7)

Согласно правилам отбора (6) ; и мы получаем три компоненты:

, (8)

В действительности имеется девять разрешенных переходов (Рис. 2, а): в магнитном поле уровни расщепляются на () компонент, где – квантовое число момента импульса. Таким образом, уровень расщепляется на три подуровня, а уровень – на пять. Однако из-за равенства факторов Ланде начального и конечного состояний энергии некоторых переходов оказываются равными, и в спектре атома в магнитном поле наблюдается 3 спектральных линии – так называемый зеемановский триплет.

а) б)

Рис. 2 – Расщепление атомных энергетических уровней в магнитном поле и разрешённые переходы: а) нормальный эффект Зеемана; б) аномальный эффект Зеемана.

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...