Гормональная регуляция синтеза жира
ЛИПОПРОТЕИНЫ Липопротеины - это сферические частицы, в которых можно выделить гидрофобную сердцевину, состоящую из триглицеридов (ТРГ) и эфиров холестерина (ЭХС) и амфифильную оболочку, в составе которой – фосфолипиды, гликолипиды и белки. Белки оболочки называются апобелками. Холестерин (ХС) обычно занимает промежуточное положение между оболочкой и сердцевиной. Компоненты частицы связаны слабыми типами связей и находятся в состоянии постоянной диффузии – способны перемещаться друг относительно друга. Основная роль липопротеинов – транспорт липидов, поэтому обнаружить их можно в биологических жидкостях. При изучении липидов плазмы крови оказалось, что их можно разделить на группы, так как они отличаются друг от друга по соотношению компонентов. У разных липопротеинов наблюдается различное соотношение липидов и белка в составе частицы, поэтому различна и плотность. Липопротеины разделяют по плотности методом ультрацентрифугирования, при этом они не осаждаются, а всплывают (флотируют). Мерой всплывания является константа флотации, обозначаемая Sf (сведберг флотации). В соответствии с этим показателем различают следующие группы липопротеинов: Липопротеины можно разделить и методом электрофореза. При классическом щелочном электрофорезе разные липопротеины ведут себя по-разному. При помещении липопротеинов в электрическое поле хиломикроны остаются на старте. ЛОНП и ЛПП можно обнаружить во фракции преb-глобулинов, ЛНП - во фракции b-глобулинов, а ЛВП - a-глобулинов: Определение липопротеинового спектра плазмы крови применяется в медицине для диагностики атеросклероза. Все эти липопротеины отличаются по своей функции.
1. Хиломикроны (ХМ) - образуются в клетках кишечника, их функция: перенос экзогенного жира из кишечника в ткани (в основном - в жировую ткань), а также - транспорт экзогенного холестерина из кишечника в печень. 2. Липопротеины Очень Низкой Плотности (ЛОНП) - образуются в печени, их роль: транспорт эндогенного жира, синтезированного в печени из углеводов, в жировую ткань. 3. Липопротеины Низкой Плотности (ЛНП) - образуются в кровеносном русле из ЛОНП через стадию образования Липопротеинов Промежуточной Плотности (ЛПП). Их роль: транспорт эндогенного холестерина в ткани. 4. Липопротеины Высокой Плотности (ЛВП) - образуются в печени, основная роль - транспорт холестерина из тканей в печень, то есть удаление холестерина из тканей, а дальше холестерин выводится с желчью. При определении содержания в крови липопротеинов различной плотности их обычно разделяют методом электрофореза. При этом ХМ остаются на старте, ЛОНП оказываются во фракции преb-глобулинов, ЛНП и ЛПП находят во фракции b-глобулинов, а ЛВП - a2-глобулинов. Если в крови повышено содержание b-глобулинов (ЛНП) - это означает, что холестерин откладывается в тканях (развивается атеросклероз).
РОЛЬ АПОБЕЛКОВ В СОСТАВЕ ЛИПОПРОТЕИНОВ Белковые компоненты липопротеинов особенно важны. Они называются " аполипопротеинами " и обозначаются латинскими буквами (апоА, апоВ, апоС и так до апоG). ФУНКЦИИ АПОБЕЛКОВ. 1. Апобелки выполняют функцию эмульгаторов, потому что являются амфифильными веществами. 2. Некоторые из аполипопротеинов являются регуляторами активности ферментов липидного обмена. 3. Могут обладать собственной ферментативной активностью. 4. Могут выступать в качестве лигандов клеточных рецепторов для липопротеинов. 5. Многие апобелки осуществляют транспорт липидов из одного липопротеина в другой.
ОБМЕН ЖИРА (ТРИАЦИЛГЛИЦЕРИНА)
Химическое название жиров - ацилглицерины, то есть жиры. Это сложные эфиры глицерина и высших жирных кислот. "Ацил-" - это означает "остаток жирных кислот" (не путать с "ацетил-" - остатком уксусной кислоты). В зависимости от количества ацильных радикалов жиры разделяются на моно-, ди- и триглицериды. Если в составе молекулы 2 радикала жирных кислот, то жир называется ДИАЦИЛГЛИЦЕРИНОМ. Если в составе молекулы 1 радикал жирных кислот, то жир называется МОНОАЦИЛГЛИЦЕРИНОМ. В организме человека и животных преобладают ТРИАЦИЛГЛИЦЕРИНЫ (содержат три радикала жирных кислот). Свойства жира определяются составом жирных кислот.
Функции жира: 1. ЭНЕРГЕТИЧЕСКАЯ. В отличие от углеводов жиры составляют энергетический резерв организма. Преимущество жира в качестве энергетического резерва заключается в том, что жиры являются более восстановленными веществами по сравнению с углеводами (в молекулах углеводов при каждом углеродном атоме есть кислород – группы “–CHOH-“; у жира имеются длинные углеводородные радикалы, в которых преобладают группы “-CH2-“ - в них нет кислорода). От жира можно отнять больше водорода, который затем проходит по цепи митохондриального окисления с образованием АТФ. Калорийность углеводов и белков: ~ 4 ккал/грамм. Калорийность жира: ~ 9 ккал/грамм. Преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность – он не связан с водой. Это обеспечивает компактность жировых запасов - они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме – примерно 400 гр.; при голодании этого количества не хватает даже на одни сутки.
2.ЗАЩИТНАЯ. Жировая ткань: а) защищает органы от механических повреждений. б) участвует в терморегуляции. Образование запасов жира в организме человека и некоторых животных рассматривается как приспособление к нерегулярному питанию и к обитанию в холодной среде. Особенно большой запас жира у животных, впадающих в длительную спячку (медведи, сурки) и приспособленных к обитанию в условиях холода (моржи, тюлени). У плода жир практически отсутствует, и появляется только перед рождением.
ИСТОЧНИКИ ЖИРА В ОРГАНИЗМЕ: 1. Пищевой жир (экзо генный) 2. Эндо генный жир, синтезируется в печени из углеводов.
ПИЩЕВОЙ ЖИР. Переваривание экзогенного жира обязательно требует предварительного эмульгирования. Некоторые пищевые жиры поступают в организм уже в эмульгированной форме, например молочный жир. Для остальных необходимо эмульгирование с помощью специальных веществ - эмульгаторов (детергентов). Эмульгаторы – вещества амфифильной природы. Они снижают поверхностное натяжение и стабилизируют эмульсию Общее в строении эмульгаторов: наличие гидрофильных и гидрофобных участков. Гидрофильным участком молекула эмульгатора растворяется в воде, гидрофобным - в жире. Благодаря этому создается большая площадь контакта жира с водной фазой, в которой находится фермент. Белки могут выступать в роли эмульгаторов. Грудным детям эмульгаторы не нужны: они получают уже эмульгированный жир молока. В организме человека эмульгаторами являются ЖЕЛЧНЫЕ КИСЛОТЫ. Это вещества стероидной природы. Синтезируются в печени из холестерина путем окисления по монооксигеназному типу в две первичные желчные кислоты: ХОЛЕВУЮ и ХЕНОДЕЗОКСИХОЛЕВУЮ, которые затем связываются с аминокислотными остатками глицина и таурина. Так образуются конъюгированные желчные кислоты - ГЛИКОХОЛЕВАЯ (в которой гидрофильный участок представлен остатком глицина) и ТАУРОХОЛЕВАЯ (в ней гидрофильный участок представлен таурином). Гидрофобным компонентом всех желчных кислот является производное холестерина. Образуются и другие желчные кислоты – их разнообразие достаточно велико. В составе желчи желчные кислоты поступают в 12-перстную кишку и аллостерически активируют панкреатическую липазу. Собственно переваривание жиров – это гидролиз сложноэфирных связей. Существует три фермента:
1. Язычная липаза. Вырабатывается клетками слизистой оболочки задней части языка. Действие этого фермента проявляется только в желудке (раньше считали, что это – желудочная липаза). Язычная липаза может переваривать уже эмульгированный жир. Ее pH-оптимум – 4-5. Поэтому в желудке взрослого человека язычная липаза неактивна. Реально жиры перевариваются язычной липазой только у младенцев.
У взрослых людей переваривание жира идет только в кишечнике по схеме: «выделение желчи Þ эмульгирование жира Þ действие панкреатической липазы». 2. Панкреатическая липаза. Сам по себе этот фермент обладает очень низкой активностью. Но в поджелудочной железе вырабатывается белок, который, попадая в кишечник, способен активировать панкреатическую липазу. Название этого белка – «колипаза». Колипаза вырабатывается в виде неактивного предшественника – проколипазы, который активируется трипсином в кишечнике. Колипаза не является классическим активатором, она лишь связывает субстрат и приближает его к активному центру липазы. Образовавшиеся жирные кислоты и моноацилглицерины могут всасываться в кишечную стенку. 3. Эстераза липидов. Под действием этого фермента ча 4. сть моноацилглицеринов может подвергаться гидролизу с образованием глицерина и жирных кислот. Таким образом, продуктами переваривания жира являются глицерин, жирные кислоты и моноацилглицерины. Всасываются продукты переваривания путем предварительного образования смешанных МИЦЕЛЛ с желчными кислотами. Итак, желчные кислоты выполняют 2 функции: эмульгирование жира и всасывание жирных кислот. Мицеллы попадают в энтероциты. Там из компонентов мицелл снова образуются триацилглицерины, а желчные кислоты по системе воротной вены возвращаются в печень, и могут снова поступать в желчь. Этот процесс называется рециркуляцией желчных кислот. Процесс синтеза жира в энтероцитах из компонентов мицелл называется РЕСИНТЕЗОМ жира. В процессе ресинтеза происходит образование жиров, близких по составу к жирам организма. Затем из ресинтезированного жира, других липидов и апобелков формируются липопротеиновые частицы: ХИЛОМИКРОНЫ. Хиломикрон построен так же, как и остальные липопротеины (смотрите стр.2). Это небольшая жировая капля: в центре ее находятся триацилглицерины, являющиеся преобладающим компонентом частицы и составляет 80% массы хиломикрона. По периферии располагаются слои фосфолипидов (8% массы) и слои апобелков (2% массы), два из которых – А и В48 синтезируются на рибосомах энтероцита, которые чередуются. Остальные 10% массы приходятся на холестерин и его эфиры. Поверхность хиломикрона гидрофильна: гидрофильные части белков и фосфолипидов находятся на поверхности частицы. Размеры хиломикрона настолько велики, что он не может пройти через поры, имеющиеся в стенках кровеносных капилляров, путем экзоцитоза. Поэтому путем экзоцитоза хиломикроны поступают в лимфу. Через нее они попадают в большой круг кровообращения, минуя печень. После употребления в пищу жира в крови наблюдается повышенное содержание хиломикронов. В кровеносном русле происходит перенос на хиломикроны ещё двух апобелков: "С" и "Е". Стенки капилляров жировой, мышечной и других клеток, а также мембраны таких клеток содержат фермент – липопротеинлипазу. Он гидролизует триацилглицерины хиломикрона. АпоС является мощным активатором липопротеинлипазы.
Поэтому этого взаимодействия количество триацилглицеринов в хиломикроне снижается, и он теряет апобелок "С", а апоЕ при этом становится хорошим лигандом для рецепторов печени. Масса хиломикрона уменьшается. Это приводит к изменению его конформации, он превращается в «остаточный хиломикрон». Остаточный хиломикрон взаимодействует с рецепторами печени и поглощается гепатоцитами путем эндоцитоза. Печень в составе остаточного хиломикрона получает пищевой (экзогенный) холестерин. Следовательно, функциями хиломикронов являются: 1) Доставка пищевого (экзогенного) жира из кишечника в другие ткани (главным образом в жировую ткань). 2) Транспорт экзогенного холестерина из кишечника в печень. Поэтому хиломикроны - это транспортная форма экзогенного жира и экзогенного холестерина. В жировой ткани из продуктов гидролиза триацилглицеринов снова происходит ресинтез жира (второй), и он депонируется там, пока не будет востребован. ЛИПОГЕНЕЗ. АТФ необходим для синтеза активных форм субстратов, используемых в процессе синтеза жира. Для синтеза нейтрального жира необходим глицерин в активной форме - глицерол-3-фосфат (фосфоглицерин). Глицерол-3-фосфат может быть получен двумя способами: 1. Путем активации глицерина с помощью глицеринкиназы. 2. Путем восстановления фосфодиоксиацетона, полученного при распаде глюкозы.
Кроме глицерина, для синтеза нейтрального жира необходимы жирные кислоты в активной форме. Активная форма любой жирной кислоты – Ацил-КоА. Образуется при участии фермента ацил-КоА-синтазы.
Здесь наблюдается глубокий распад АТФ до АМФ. АМФ не может вступить в окислительное фосфорилирование. Поэтому существует реакция: АТФ + АМФ Þ 2АДФ. Поэтому затраты на активацию молекулы жирной кислоты эквивалентны затрате двух АТФ. Следующим этапом на пути синтеза жира является реакция образования фосфатидной кислоты: Реакция катализируется ключевым ферментом липогенеза – глицерол-3-фосфатацилтрансферазой. Для этого фермента нет аллостерических эффекторов, но обнаружен адипсин (ацилстимулирующий белок), который облегчает взаимодействие Ацил-КоА с ферментом. Адипсин является продуктом протеолиза одного из компонентов системы комплемента. Относится к гормонам местного действия, так как вырабатывается в жировой ткани и действует там же. Две последующие реакции являются завершающими в синтезе триацилглицерина.
Реакции синтеза не зависят от того, каково происхождение веществ – участников реакций. Жир может синтезироваться как из продуктов распада жира, так и из углеводов. Синтез эндогенного жира из углеводов протекает в печени и в жировой ткани. Ацил-КоА синтезируется из Ацетил-КоА. ГБФ-путь распада углеводов обеспечивает синтез энергией. Образование Ацетил-КоА происходит в матриксе митохондрий. Синтез жирных кислот идет в цитоплазме на мембранах эндоплазматического ретикулума путем постепенного удлинения ацетил-КоА на 2 углеродных атома за каждый цикл. Удлинение высших жирных кислот, содержащих более 16 углеродных атомов, идёт путём реакций, обратных b-окислению (О b-окислении смотрите ниже, раздел «Катаболизм жирных кислот»). Однако реакции синтеза жирных кислот до 16 углеродных атомов принципиально отличаются от реакций, обратных b-окислению. Они протекают обходным обратным путём. Отличия реакций синтеза высших жирных кислот от обратных бета-окислению: 1. b-окисление протекает в митохондриях, а синтез жирных кислот протекает в цитоплазме на мембранах эндоплазматического ретикулума. Но образуется Ацетил-КоА в митохондриях, а через мембраны сам проходить не может. Поэтому существуют механизмы транспорта Ацетил-КоА из митохондрий в цитоплазму. Ключевыми ферментами ЦТК являются цитратсинтаза и изоцитратдегидрогеназа. Основные аллостерические регуляторы этих ферментов - это АТФ и АДФ. Если в клетке много АТФ, то АТФ выступает как ингибитор этих ключевых ферментов. Однако изоцитратдегидрогеназа угнетается АТФ сильнее, чем цитратсинтетаза. Это приводит к накоплению цитрата и изоцитрата в матриксе митохондрии. При накоплении цитрат выходит из митохондрии в цитоплазму. В цитоплазме есть фермент цитратлиаза. Этот фермент расщепляет цитрат на ЩУК и Ацетил-КоА. Условием для выхода Ацетил-КоА из митохондрии в цитоплазму является хорошее обеспечение клетки АТФ. Если АТФ в клетке мало, то Ацетил-КоА расщепляется до СО2 и Н2О. 2. В ходе b-окисления промежуточные продукты связаны с HS-КоА, а при синтезе жирных кислот промежуточные продукты связаны с особым ацил-переносящим белком (АПБ). Это сложный белок. Его небелковая часть похожа по строению на КоА. Небелковая часть АПБ состоит из тиоэтиламина, пантотеновой кислоты (витамин В3) и фосфата. 3. При b-окислении в качестве окислителя используются НАД и ФАД. При синтезе ЖК нужен восстановитель - используется НАДФ*Н2. В клетке существует 2 основных источника НАДФ*Н2 для синтеза жирных кислот: а) ГМФ-путь распада углеводов б) В реакции окисления малата (смотрите рисунок). Эта реакция протекает в цитоплазме и катализируется ферментом МАЛАТДЕГИДРОГЕНАЗОЙ ДЕКАРБОКСИЛИРУЮЩЕЙ, тривиальное название которого – ЯБЛОЧНЫЙ ФЕРМЕНТ. 4. В ходе синтеза жирных кислот в каждом цикле удлинения используется не сам Ацетил-КоА, а его производное - малонил-КоА (при b-окислении каждый цикл укорочения приводит к образованию Ацетил-КоА). Эту реакцию катализирует фермент АЦЕТИЛ-КоА-КАРБОКСИЛАЗА. Это ключевой фермент в мультиферментной системе синтеза ЖК. Этот фермент регулируется по типу отрицательной обратной связи. Ингибитором является продукт синтеза: ацил-КоА с длинной цепью (n=16) - пальмитоил-КоА. Активатором является цитрат. В состав небелковой части этого фермента входит витамин H (биотин). Далее происходит поэтапное удлинение молекулы Ац-КоА на 2 углеродных атома за каждый этап за счет малонил-КоА. В процессе удлинения малонил-КоА теряет СО2. После образования малонил-КоА основные реакции синтеза жирных кислот катализируются одним ферментом - синтетазой жирных кислот (фиксирован на мембранах эндоплазматического ретикулума). Синтетаза жирных кислот содержит 7 активных центров. Участок, связывающий малонил-КоА, содержит небелковый компонент – витамин B3 (пантотеновую кислоту).
РЕАКЦИИ СИНТЕЗА ЖИРНЫХ КИСЛОТ.
После этого ацил-АПБ вступает в новый цикл синтеза. К свободной SH-группе ацилпереносящего белка присоединяется новая молекула малонил-КоА. Затем происходит отщепление ацильного остатка, и он переносится на малонильный остаток с одновременным декарбоксилированием, и цикл реакций повторяется. Таким образом, углеводородная цепочка будущей жирной кислоты постепенно растет (за каждый цикл – на два углеродных атома). Это происходит до момента, пока она не удлинится до 16 углеродных атомов (в случае синтеза пальмитиновой кислоты) или более (синтез других жирных кислот). Вслед за этим происходит тиолиз, и образуется в готовом виде активная форма жирной кислоты – ацил-КоА.
УСЛОВИЯ ДЛЯ ПРОТЕКАНИЯ СИНТЕЗА ВЫСШИХ ЖИРНЫХ КИСЛОТ: 1) Поступление углеводов, при окислении которых образуются необходимые субстраты и НАДФН2. 2) Высокий энергетический заряд клетки – высокое содержание АТФ, которое обеспечивает выход цитрата из митохондрий в цитоплазму. Обмен углеводов и обмен жиров очень тесно связаны. Углеводы легко могут превращаться в жиры, а вот превращение жиров в углеводы невозможно. Жиры не могут превращаться в углеводы, так как Ацетил-КоА не может превращаться в пируват. Обмен жиров и углеводов объединяется как энергетический обмен, который находится под контролем гормонов.
ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ СИНТЕЗА ЖИРА Основным гормоном, регулирующим липогенез, является инсулин. Инсулин стимулирует синтез жира. На генетическом уровне инсулин стимулирует биосинтез ферментов, катализирующих образование ацил-КоА и триацилглицеринов. Инсулин также стимулирует биосинтез ферментов, обслуживающих обмен липидов – ферментов ГМФ-пути распада углеводов и яблочного фермента. Поэтому истощенным больным вводят глюкозу одновременно с инсулином с целью увеличения жировых запасов.
ТРАНСПОРТ ЭНДОГЕННОГО ЖИРА И ХОЛЕСТЕРИНА ИЗ ПЕЧЕНИ В ДРУГИЕ ТКАНИ. Транспортной формой эндогенного жира и холестерина из печени в другие ткани являются ЛОНП - липопротеины очень низкой плотности. Ядро этих частиц состоит из эндогенных триацилглицеринов и холестерина, а оболочка - из фосфолипидов, белка апоВ100 (образуется в печени, молекулярная масса 100кДа). Из печени ЛОНП поступают в кровь, где к ним присоединяются белки апоЕ и апоС. АпоС - активатор липопротеин-липазы капилляров, расщепляет триглицериды, образуются глицерин и жирные кислоты - они поступают в ткань. Затем ЛОНП теряет апоС, превращаясь в ЛПП - липопротеины промежуточной плотности. ЛПП, теряя апоЕ, превращается липопротеины низкой плотности (ЛНП). Он содержит мало триглицеридов и много холестерина. Его функцией является перенос холестерина из печени в ткани.
Рецепторы к В100 были открыты американскими биохимиками Гольдштейном и Брауном. При генетическом дефекте рецепторов к B100 развивается наследственная гиперхолестеринемия, приводящая к раннему атеросклерозу. В этом случае у гомозиготных детей уже в возрасте 5-7 лет наблюдаются множественные инфаркты миокарда. У гетерозигот острые инфаркты миокарда отмечаются в 30-40-летнем возрасте. Если изменяется конформация В100, нарушается взаимодействие лиганда и рецептора. Фактор риска для этой модификации – воздействие на ЛНП компонентов табачного дыма.
КАТАБОЛИЗМ ЖИРА Жиры хранятся до момента их использования. Катаболизм жира идет в три этапа: 1. Гидролиз жира до глицерина и жирных кислот (липолиз) 2. Превращение глицерина (вступает в ГБФ-путь) и жирных кислот (подвергаются b-окислению) в ацетил-КоА. 3. Общий путь – цикл трикарбоновых кислот
Процесс липолиза известен как МОБИЛИЗАЦИЯ ЖИРА. Мобилизация жира - это реакция гидролиза жира до глицерина и жирных кислот. Это ферментативный процесс. Осуществляют его два фермента: 1. ЛИПАЗА ЖИРОВОЙ ТКАНИ. 2. МОНОГЛИЦЕРИДЛИПАЗА
Ключевым ферментом является липаза жировой ткани. Она регулируется гормонами, поэтому часто ее называют «ГОРМОНЧУВСТВИТЕЛЬНАЯ ЛИПАЗА». Это небольшой белок (мол. масса 82-88 кДа) находится в жировых клетках. Существует в двух формах: фосфорилированной - активной и дефосфорилированной - неактивной. Фосфорилирование липазы происходит под действием протеинкиназы А. Липаза жировой ткани – является цАМФ-зависимым ферментом. Гормоны, увеличивающие концентрацию цАМФ, усиливают липолиз. Все гормоны, влияющие на мобилизацию жира, можно разделить на 2 группы 1. Гормоны прямого действия (адреналин, соматотропный гормон гипофиза, инсулин). 2. Гормоны косвенного действия (глюкокортикостероиды, половые гормоны, лептин).
АДРЕНАЛИН Мембраны адипоцитов содержат адренорецепторы двух типов (a и b). Взаимодействие адреналина с рецепторами обоих типов вызывает изменение концентрации цАМФ. Однако, это влияние разнонаправленное. a-адренорецептор связан с ингибирующим G-белком (Gi), свызывающим понижение активности аденилатциклазы. Это приводит к уменьшению концентрации цАМФ, и, в конечном счете, торможению липолиза. b-адренорецептор связан со стимулирующим G-белком (Gs) – эффектом будет стимуляция липолиза. Соотношение a- и b-адренорецепторов зависит от индивидуальных особенностей организма. Это касается как организма в целом, так и распределения этих рецепторов в разных частях тела – поэтому в процессе липолиза разные части тела у разных людей «худеют» неодинаково. Однако в целом у человека преобладают b-адренорецепторы, поэтому суммарное действие адреналина приводит к активации липолиза. СОМАТОТРОПНЫЙ ГОРМОН – стимулирует липолиз, воздействуя через аденилатциклазную систему. Действие ИНСУЛИНА связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации. ГЛЮКОКОРТИКОСТЕРОИДЫ: рецепторы к этим гормонам присутствуют в адипоцитах и содержат в своем составе белки теплового шока. После взаимодействия гормона с рецептором белки теплового шока отделяются, а сам комплекс транспортируется в ядро клетки, где влияет на синтез белков адипоцита. Конкретные механизмы влияния не до конца выяснены и находятся в стадии изучения. В итоге глюкокортикостероиды оказывают двоякое действие: на фоне мышечной работы они стимулируют липолиз, а в состоянии покоя – ингибируют его. Установлено, что при развитии опухоли коры надпочечников или при введении высоких доз препаратов глюкокортикостероидов, наблюдается рост жировых запасов на лице и в верхней части туловища (синдром Иценко-Кушинга). ПОЛОВЫЕ ГОРМОНЫ: точный механизм их воздействия на жировой обмен пока не выяснен, но известно, что действуют эти гормонов связано со стимуляцией синтеза определенных белков. Действие половых гормонов однонаправленное: стимуляция распада жира. Ярким примером является действие тестостерона. Кастрация приводит к увеличению запасов жира. ЛЕПТИН (от лат. Leptos – тонкий, худой). По химической природе – полипептид, синтезируется в адипоцитах. Лептин – гормон жировой ткани (поэтому жировую ткань можно отнести к эндокринным). Рецепторы к лептину расположены в гипоталамусе и в тканях репродуктивной системы. Лептин снижает выработку нейропептида Y, который вызывает повышение аппетита и усиливает синтез жира (точные механизмы воздействия пока неясны).Лептин также стимулирует выработку разобщающих белков бурого жира. Суммарный эффект лептина: снижение аппетита и усиление липолиза. Концентрация лептина в крови пропорциональна количеству жировых клеток. Поэтому, можно считать, что лептин передает в головной мозг информацию о количестве жира в организме. Лептин также усиливает репродуктивную функцию человека. В настоящее время ведутся работы над созданием рекомбинантного лептина для лечения ожирения. Продукты липолиза - глицерин и жирные кислоты выходят из жировой клетки, попадают в кровь и поступают в клетки других тканей. Глицерин как вещество гидрофильное растворяется в плазме крови. Жирные кислоты - гидрофобные вещества. Поэтому для транспорта в кровяном русле для них необходимы переносчики. Транспорт жирных кислот обеспечивают белки плазмы крови альбумины, образующие с ними комплексы. Такие комплексы образуются путем формирования слабых типов связей: гидрофобного взаимодействия радикалов жирных кислот и ионных связей СООН-групп жирных кислот с радикалами лизина молекулы альбумина. Следовательно, жирные кислоты в составе комплекса являются химически свободными. Жирные кислоты, находящиеся в комплексе с альбуминами, обозначаются термином НЕЭСТЕРИФИЦИРОВАННЫЕ ЖИРНЫЕ КИСЛОТЫ (НЭЖК). Уровень НЭЖК в крови – показатель степени мобилизации жира: чем больше в плазме крови НЭЖК, тем интенсивнее идет липолиз. Липолиз происходит в ходе мышечной работы и при голодании, что сопоровождается повышением концентрации НЭЖК в крови. Глицерин и жирные кислоты в этой ситуации выступают как источники энергии.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|