Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Дифференциальный усилитель. Входные токи смещения

 

При построении многокаскадных схем УПТ балансные каскады можно соединять друг с другом непосредственной связью. При этом коллекторы предыдущего каскада соединяются с базами последующего.

В некоторых случаях выходной сигнал в балансном каскаде снимается с одного из коллекторов, а входные сигналы поступают на базы обоих транзисторов (рисунок 6.6). Такая схема имеет симметричный вход и несимметричный выход (либо с коллектора VT1, либо с коллектора VT2). Фаза выходного сигнала совпадает с фазой сигнала Uвх1 и противоположна фазе сигнала Uвх2. Элементы схемы можно подобрать так, что выходное напряжение будет пропорционально разности входных напряжений, и в идеальном случае не будет изменяться, если напряжения Uвх1 и Uвх2 получают равные приращения одного знака. Такой усилительный каскад называют дифференциальным.

 

Рисунок 6.6 Балансная схема УПТ

 

Так как такие усилители усиливают разность входных сигналов, то можно считать, что один из входов усиливается с положительным коэффициентом усиления, а другой – с отрицательным. Поэтому часто такие входы называются соответственно не инвертирующим (прямым) и инвертирующим (инверсным).

Дифференциальный усилитель характеризуется коэффициентом усиления разности входных напряжений а также коэффициентом усиления среднего уровня входных напряжений (синфазный сигнал)

 

                                                                             (6.5)

                                                                               (6.6)

 

где К1 и К2 – коэффициенты усиления по первому и второму входам (с учетом возможной асимметрии каналов).

Разностный сигнал (т.е. дифференциальная составляющая входного напряжения) есть полезный сигнал, который не6обходимо усилить, синфазная же составляющая является помехой, которая не должна проникать на выход, т.е. должна быть ослаблена. Подобная ситуация возникает при передаче информации (например, сигналов от датчиков) по длинным линиям связи (проводам). На оба эти провода действуют одни и те же напряжения помех и шумов, которые образуют синфазную составляющую входного сигнала. Дифференциальные каскады на входе усилителя резко уменьшают величину помех и шумов и усиливают полезный сигнал.

Для того чтобы усилитель реагировал только на разность входных напряжений, необходимо выполнение неравенства Ксин << Кдиф. А для этого, как следует из выражений (6.5) и (6.6), необходимой является одинаковость значений коэффициентов усиления по обоим каналам.

Рассмотрим некоторые варианты построения каскадов дифференциальных усилителей (ДУ). Дифференциальный каскад может иметь два выхода, сигналы на которых противофазные, поэтому их можно использовать в качестве фазоинверсных каскадов (рисунок 6.6). Если используется только один вход дифференциального усилителя, то коллекторный резистор противоположного плеча можно исключить из схемы (рисунок 6.7а).

 

Рисунок 6.7. Модифицированные схемы дифференциальных усилителей

 

Для увеличения дифференциального коэффициента необходимо увеличить сопротивление в цепи коллектора, а для уменьшения синфазного – увеличить сопротивление в цепи эмиттера. Просто увеличить этот резистор нецелесообразно, так как это приводит к уменьшению коллекторного тока транзисторов. Поэтому очень часто в эти цепи вводят источники тока (рисунок 6.7,б), которые строят на основе транзисторных структур. В этих случаях наиболее часто применяют двухполярный источник питания. Наличие двухполярного источника позволяет не только более гибко организовать питание всех элементов схемы, но и более жестко привязать входные сигналы к нулевому потенциалу (земле).

Причиной появления не равного нулю напряжения на выходе (U вых  ¹ 0) при U вх нач = 0 может быть не только напряжение смещения нуля и его дрейф, но также входные токи ДУ. Эти токи появляются, в цепях, через которые подаются сигналы на входы. Например, в схемах рисунков 6.6 и 6.7,а токи во входных цепях будут обусловлены их подсоединением через делитель в цепях баз транзисторов к источнику питания. В схеме рисунка 6.7,б – перераспределением токов баз входных транзисторов. Необходимо отметь, что величина этих токов не определяется подаваемыми входными сигналами, а определяется схемотехникой входных каскадов ДУ. Обычно считают, что в0 входных цепях каждого входа имеется отдельный источник тока. Для определения влияния этих токов на выходное напряжение представим дифференциальный усилитель, на входы которого подано два сигнала U 1 и U 2 (рисунок 6.8).

 

Рисунок 6.8. Влияние входных токов смещения

 

Сигналы поступают на прямой и инверсный входы через резисторы R 1 и R 2. Эти резисторы формируются за счет внешних резисторов и выходного сопротивления источников сигнала. Как частный случай, одно из них (или оба) могут быть равны нулю.

Пусть ДУ имеет нулевое напряжение смещения нуля (U см вх = 0) и Ксин = 0, поэтому

 

,                                                                      (6.7)

 

где U А и U В – напряжения в точках А и В (на прямом и инверсном входе ДУ), которые равны:

 

.

 

Подставляя их в (6.7), получаем

 

.                                          (6.9)

 

Из последнего выражения следует, что даже в отсутствии входного дифференциального напряжения (U 1U 2 = 0), напряжение на выходе может отличаться от нулевого:

 

[1].                                                            (6.10)

 

Как было указано выше, при конструировании балансных схем стремятся к максимальной симметрии каналов, поэтому модно предположить, что в реальных усилителях и токи должны быть близкими по величине. Это подсказывает путь для уменьшения напряжения смещения нуля, обусловленного входными токами: необходимо сделать одинаковыми сопротивления резисторов во входных цепях (R 1 = R 2 = R). Тогда напряжение смещения нуля будет определяться разностью входных токов:

 

,                                                    (6.11)

 

Реально разность входных токов сдвига примерно в 10 раз меньше, чем сам входной ток. Типичное соотношение между ними, которые приводятся в справочниках 2 … 5.

Дифференциальные усилительные каскады являются в настоящее время распространенной конфигурацией многих схем в интегральном исполнении, в частности, они используются во входных каскадах интегральных операционных усилителей.

УПТ типа МДМ

 

Применение балансных схем и стабилизация источников питания позволяют снизить дрейф нуля УПТ прямого усиления до величины, в лучшем случае 10 мкВ/час. Поэтому для усиления сигналов меньшей применяется УПТ с преобразованием (УПТ МДМ – усилители постоянного тока типа «модулятор демодулятор»), структурная схема которого представлена на рисунке 6.9.

 

Рисунок 6.9. Структурная схема УПТ с преобразованием

 

На вход модулятора кроме медленно меняющегося напряжения сигнала поступает еще и сигнал от генератора. Обычно это синусоидальный сигнал (U г = U т sin (w t + j)), частота которого должна быть значительно выше верхней частоты входного сигнала. В модуляторе происходит изменение (модуляция) одного из параметров сигнала генератора в соответствии с входным сигналом. Если изменяется амплитуда (U т), то имеет место так называемая амплитудная модуляция, если частота (w), – то частотная, если фаза (j), – то фазовая. Может быть использована и комплексная модуляция, например, амплитудно-фазовая или иная. В результате модуляции информация о входном сигнале переходит на результирующий (промодулированный) высокочастотный сигнал, который поступает на вход усилителя переменного напряжения. На рисунке 6.109 приведены графики сигналов в узловых точках усилителя: входного (U вх),генератора (U г) и сигнала на выходе модулятора (U м) при использовании амплитудной модуляции. Как видно из графиков, огибающая выходного сигнала модулятора, в этом случае, изменяется в соответствии с входным сигналом.

 

Рисунок 6.10. Временные диаграммы УПТ с преобразованием

 

В схеме используется усилитель переменного тока который обеспечивает увеличение амплитуды сигнала U м в К раз. В демодуляторе происходит процесс обратный модуляции: из высокочастотного промодулированного сигнала выделяется его низкочастотная составляющая, которая теперь оказывается усиленной. Подача на демодулятор (в радиотехнике его часто называют детектором) также сигнала генератора позволяет повысить эффективность процесса демодуляции.

Дрейф нуля УПТ с преобразованием определяется фактически только дрейфом модулятора, потому, что усилитель переменного напряжения практически не имеет дрейфа, а дрейфом демодулятора можно пренебречь, так как на его вход подается сравнительно большое напряжение, значительно превышающее напряжение возможных помех. На рис.6.6,б приведены временные диаграммы, характеризующие работу схемы УПТ.

УПТ типа МДМ выполняются обычно в виде законченных интегральных схем, имеющих в своем составе все необходимые блоки.

 


2. ОПЕРАЦИОННЫЕ УСИЛИТЕЛИ

Общие сведения

 

Операционным усилителем (ОУ) называетсяусилитель, который характеризуется определенным набором параметров, позволяющих ему выполнять математические операции (сложения, вычитания, интегрирования и т.д. и т.п.). Это свойство и определило наименование «операционный усилитель». Первоначально усилители такого класса предназначались для выполнения математических операций в аналоговых вычислительных машинах. Основными параметрами, обеспечивающими его «математические способности», являются:

¨ большой коэффициент усиления по напряжению (в идеале К Þ ¥);

¨ большое входное сопротивление (в идеале Rвх Þ ¥);

¨ нижняя частота усиливаемых сигналов f н = 0.

Последний параметр указывает на то, что ОУ должен быть усилителем постоянного тока. Объясняется это требование тем, что одной из распространенных математических операций есть действия с константами, например, сложения переменных с константами. В этом случае математическая переменная будет реализовываться изменяющимся сигналом, константа – постоянным. В настоящее время сфера применения ОУ значительно расширилась и во многих случаях требование f н = 0 не является обязательным и даже иногда вредным. Однако превратить УПТ в усилитель переменного тока можно достаточно просто (например, вводя разделительные емкости). Поэтому большинство массовых операционных усилителе выпускаются как усилители постоянного тока.

Условное обозначение ОУ приведено на рисунке 7.1. В обозначении функции (¥ > – усилитель с бесконечно большим коэффициентом усиления) первый символ ) часто опускается.


Рисунок 7.1. Условное обозначение операционного усилителя

 

Операционные усилители имеют два входа (инвертирующий и не инвертирующий) и один выход. Таким образом, ОУ является дифференциальным усилителем. Это позволяет при «математическом» варианте использования усилителя достаточно просто осуществить операцию вычитания, при иных – улучшить многие параметры устройства, например, избавляться от синфазного сигнала, реализовывать цепи как положительной так и отрицательной обратной связи и т.п. На схеме инвертирующий вход обозначают кружком.

Обычно операционные усилители имеют два вывода подключения питания минус Е и плюс Е. Выводы, служащие для коррекции нуля операционных усилителей, обозначаются символами NC (N ull C orrection) а те, к которым подключаются элементы частотной коррекции FC (F requency C orrection). Более подробная информация о назначении таких выводов будет приведена далее. Следует отметить, что в некоторых типах ОУ выводы коррекции могут отсутствовать. Обозначения функций выводов могут быть как отделены от основного поля, так и не иметь ограничительных линий.

Первые операционные усилители выполнялись на электронных лампах, в настоящее время они изготовляются в интегральном исполнении в виде микросхем (МС). Благодаря своим отличным характеристикам и параметрам, универсальности применения, низкой стоимости, операционные усилители в настоящее время вытесняют транзисторные схемы при проектировании аналоговых устройств. Многие МС, выполняющие сложные функции по обработке аналоговых сигналов, строятся на основе схем, близких к схемам ОУ, либо включают в себя ОУ в виде собственных фрагментов.

Структурная схема ОУ

 

Операционный усилитель обычно выполняется по схеме усилителя напряжения из нескольких каскадов и состоит из нескольких десятков биполярных или полевых транзисторов, резисторов и иногда конденсаторов. Очень широко в ОУ используются источники тока (для увеличения коэффициентов усиления, задания рабочих точек и т.п.). Входной каскад выполняется по дифференциальной схеме. Ее типовое изображение (за исключением резисторов, подсоединяющих базу к земле) представлено на рисунке 6.7,б. Использование двуполярных источников питания позволяет обеспечить подачу двух входных сигналов, напряжение которых отсчитывается относительно общей земли. Во многих применениях один из входов непосредственно (или через внешний резистор) соединен с землей.

Выходной каскад строится по одной из схем двухтактного бестрансформаторного усилителя мощности (см. раздел 5). затем включается каскад с общим эмиттером и на выходе ОУ –эмиттерный повторитель. Как правило, выходной каскад имеет схему защиты от перегрузок по току.

Для того, чтобы обеспечить нулевое значение выходного напряжения при отсутствии входных сигналов (см. напряжение смещения нуля в разделе 5), в ОУ имеется узел, задачей которого является понижение напряжения с выхода ДУ (с коллектора выходного транзистора) до нуля. Зачастую этот «преобразователь уровня» выполняется в виде активного усилительного каскада.

Следует отметить, что иногда в категорию ОУ включаются усилители, выполненные как усилители тока или как УПТ МДМ, имеющие другую внутреннюю структуру, но характеризующиеся значениями параметров, указанными выше.


Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...