Механизмы коагуляции. 1. Нейтрализация заряда. 2. Химическое связывание. 41. Правила коагуляции. 44. Опишите теорию длфо. 45. Электрофорез, Электроосмос, электрофоретическая подвижность
⇐ ПредыдущаяСтр 7 из 7 Механизмы коагуляции 1. Нейтрализация заряда Положительно заряженные коагулянты нейтрализуют отрицательный заряд, окружающий коллоидные частицы. Когда заряд вокруг каждой частицы нейтрализован, они постепенно сближаются, уменьшая свой эффективный радиус, становятся в конце концов неустойчивыми и могут сталкиваться друг с другом. При столкновении частицы соединяются друг с другом за счет водородных связей или, например, сил Ван дер Ваальса, образуя большие массы, или хлопья. Энергия перемешивания, применяемая в процессе очистки, увеличивает количество и частоту этих столкновений частиц, усиливая агломерацию твердого вещества и способствуя образованию хлопьев. 2. Химическое связывание Образованию хлопьев способствует полимерная природа коагулянтов. Их длинные молекулярные цепочки подхватывают агломерированные частицы, образуют мостики от одной поверхности к другой, связывая вместе отдельные хлопья в крупные, легко удаляемые массы. 41. ПРАВИЛА КОАГУЛЯЦИИ. Правила коагуляции: 1. Все сильные электролиты, добавленные к золю в достаточном количестве, вызывают его коагуляцию. Минимальная концентрация электролита, при которой начинается коагуляция, называется порогом коагуляции Ck. Иногда вместо порога коагуляции используют величину VK, называемую коагулирующей способностью. Это объем золя, который коагулирует под действием 1 моля электролита:, т. е. чем меньше порог коагуляции, тем больше коагулирующая способность электролита. 2. Коагулирующим действием обладает не весь электролит, а только тот ион, заряд которого совпадает по знаку с зарядом противоиона мицеллы лиофобного золя. Этот ион называют ионом-коагулянтом.
3. Коагулирующая способность иона-коагулянта тем больше, чем больше заряд иона. Количественно эта закономерность описывается эмпирическим правилом Щульце - Гарди: или, где - постоянная для данной системы величина; Z - заряд иона - коагулянта; - порог коагуляции однозарядного, двухзарядного, трехзарядного иона-коагулянта. Правило устанавливает, что коагулирующие силы иона тем больше, чем больше его валентность. Экспериментально установлено, что ионы с высшей валентностью имеют значение порога коагуляции ниже, чем ионы с низшей. Следовательно, для коагуляции лучше брать ионы с высшей степенью окисления. Если валентность ионов одинакова, то коагулирующая способность зависит от размеров и степени гидратации ионов. Чем больше радиус иона, тем больше его коагулирующая способность. По этому правилу составлены лиотропные ряды. Органические ионы-коагулянты, как правило, лучше коагулируют гидрозоли, чем неорганические, т. к. они легко поляризуются и адсорбируются. С точки зрения двойного электрического слоя (ДЭС) считается, что коагуляция идет в том случае, когда -потенциал > 30 мВ. Коагулирующая способность иона при одинаковом заряде тем больше, чем больше его кристаллический радиус. Причина с одной стороны, в большой поляризуемости ионов наибольшего радиуса, следовательно, в их способности притягиваться поверхностью, состоящей из ионов и полярных молекул. С другой стороны, чем больше радиус иона, тем меньше, при одной и той же величине заряда, гидратация иона. Гидратная же оболочка уменьшает электрическое взаимодействие. Коагулирующая способность органических ионов больше по сравнению с неорганическими ионами. 44. ОПИШИТЕ ТЕОРИЮ ДЛФО Устойчивость лиофобных золей к коагуляции может быть вызвана наличием энергетического барьера в некоторой области расстояний между частицами, препятствующего их дальнейшему сближению и связанного с преобладанием отталкивания частиц над их притяжением, обусловленным межмолекулярными взаимодействиями. Согласно теории Дерягина-Ландау-Фервея-Овербека (теории ДЛФО), возникновение такого барьера рассматривается как результат электростатического отталкивания частиц из-за наличия на их поверхности двойного электрического слоя. Отталкивание частиц может иметь и другие причины, например оно может быть обусловлено тем, что граничные (сольватные) слои жидкости имеют структуру, отличную от структуры в объеме дисперсионной среды, или наличием адсорбционных слоев ПАВ (структурно-механический барьер по Ребиндеру), а также может быть связано с другими дальнодействующими поверхностными силами.
45. ЭЛЕКТРОФОРЕЗ, ЭЛЕКТРООСМОС, ЭЛЕКТРОФОРЕТИЧЕСКАЯ ПОДВИЖНОСТЬ Электрофорез — это электрокинетическое явление перемещения частиц дисперсной фазы (коллоидных или белковых растворов) в жидкой или газообразной среде под действием внешнего электрического поля. Электроосмос — это движение жидкости через капилляры или пористые диафрагмы при наложении внешнего электрического поля. Электрофоретическая подвижность — скорость, с которой молекула движется под действием электрического поля, т. е. путь, пройденный молекулой из расчета на единицу электрического поля в единицу времени при электрофорезе
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|