Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Оптические и рентгеновские пульсары




Открытие пульсаров первоначально обошло стороной объект, с которого начиналось большинство важных открытий в остатках сверхновых,- Крабовидную туманность. Дело изменилось, однако, в 1968 г., когда сначала в Парусах X, а затем в "Крабе" были обнаружены радиопульсары с самыми короткими периодами.

В январе 1969 г. район пульсара в Крабовидной туманности был обследован оптическим телескопом с фотоэлектрической аппаратурой, способной регистрировать быстрые колебания блеска. Поиски оказались успешными: было отмечено существование оптического объекта с колебаниями блеска, имеющими такой же период, как и радиопульсар в этой туманности. Этим объектом оказалась звездочка 16-й величины в центре туманности, давно привлекавшая к себе внимание исследователей своей странностью. Она имела какой-то неразборчивый спектр без спектральных линий. Исследуя в 1942 г. Крабовидную туманность, В. Бааде указал на нее как на возможный звездный остаток сверхновой, а И.С. Шкловский в более поздние годы, подчеркивая возможную особую природу этой звезды, предполагал, что она является источником релятивистских частиц и фотонов высокой энергии. Но все это были лишь предположения, нуждавшиеся в наблюдательных доказательствах. И вот звезда оказалась оптическим пульсаром, имеющим одинаковые с радиопульсаром период и интеримпульсы, а физически - как мы установили - она должна быть нейтронной звездой, расход энергии которой достаточен для поддержания свечения и всех видов излучений Крабовидной туманности.

В прошлом проводились неоднократные специальные измерения положения пары центральных звезд туманности с целью обнаружить их годичное перемещение по небу (собственное движение). Если бы пульсар двигался только поперек луча зрения, то его скорость, судя по собственному движению и расстоянию Крабовидной туманности, была бы около 100 км/с. Но он имеет еще и скорость вдоль луча зрения - лучевую скорость. К сожалению, из-за отсутствия линий в спектре оптического пульсара ее измерить невозможно. Существует предположение, что звезда, которая в 1054 г. взорвалась как сверхновая, относится к группе горячих звезд классов О н В, называемой звездной ассоциацией Близнецы-I, пространственно расположенной по соседству с Крабовидной туманностью. В этом случае звезда должна иметь скорость примерно такого же порядка, как и вычисленная по собственному движению.

Интересно, что можно рассчитать место, где находился, судя по собственному движению, пульсар в момент взрыва сверхновой. Оказывается, оно неплохо совпадает с точкой, из которой, как кажется, разлетается вещество Крабовидной туманности. Это прямо свидетельствует о совместном происхождении пульсара и туманности в процессе взрыва звезды.

Естественно, что после открытия оптического пульсара были проведены поиски и в других остатках сверхновых, особенно в тех, где уже найдены радиопульсары. Но только в 1977 г. австралийским астрономам с помощью специальной техники удалось нащупать пульсацию в оптическом диапазоне исключительно слабой звездочки 25-й величины в остатке сверхновой Паруса X.

Третий оптический пульсар, Р 1937-215, имел не менее интересную историю. Его нашли в 1982 г. в созвездии Лисички по радиоизлучению. Остатка сверхновой не найдено. Период пульсаций оказался рекордно коротким: в 20 раз меньшим, чем период пульсара в "Крабе", а возраст оценен в миллион лет.

Еще один сюрприз преподнес пульсар в Крабовидной туманности: ракетными исследованиями с аппаратурой, чувствительной к мягким рентгеновским лучам, было найдено, что мягкое рентгеновское излучение туманности имеет несколько переменный характер: примерно 5% этого излучения колебалось с таким же периодом, что и пульсар. Таким образом, пульсар в Крабовидной туманности оказался не только оптическим, но и рентгеновским.

Когда после сообщений об открытии рентгеновского пульсара были переобработаны наблюдения жесткого рентгеновского излучения Крабовидной туманности, полученные в 1967 г. на стратостатах с автоматической рентгеновской аппаратурой, то оказалось, что 7% этого излучения тоже было пульсирующим.

Рентгеновский пульсар, таким образом, мог быть обнаружен ранее первых радиопульсаров, но этого не произошло, так как существование быстрых колебаний излучения тогда не предполагалось.

В баллонных (аэростатных) и ракетных экспериментах теперь измерили и гамма-излучение Крабовидной туманности. Оно тоже носит пульсирующий характер с тем же периодом. К 1971 г. обнаружены следы гамма-излучения этого объекта до энергий 150 МэВ. Причем, если судить по падению оптического и рентгеновского излучений с длиной волны у туманности и у пульсара, в рентгеновском и гамма-излучениях роль пульсара, систематически возрастает и в гамма-излучении господствует только излучение пульсара. Если сопоставить все электромагнитное излучение туманности и пульсара на всех длинах волн, то становится очевидным, что у оптических и рентгеновских пульсаций, по-видимому, одинаковый механизм излучения, а у радиопульсаций свой особый. Одинаковый период тех и других говорит лишь о том, что оба механизма' работают у поверхности одного и того же объекта.

Но если так, то возможны и такие пульсары, у которых имеется только радиопульсация, а сильного оптического и рентгеновского излучения нет. Может быть, это и есть наблюдаемые типичные радиопульсары? Но тогда могут быть и оптические, и рентгеновские пульсары без сильного радиоизлучения. На такую возможность указал советский астрофизик В.Л. Гинзбург, ссылаясь при этом на историю исследования квазаров. Они тоже были обнаружены сначала по значительному радиоизлучению, оказались совпадающими со звездоподобными голубыми объектами, а затем было найдено множество таких звездоподобных голубых объектов без сильного радиоизлучения. И действительно, та же история повторилась с рентгеновскими пульсарами.

Первые исследования рентгеновских источников велись на ракетах. После тщательного изучения на месте некоторых источников были найдены оптические объекты, оказавшиеся на вид нормальными голубыми звездами. Это было загадочно.

Многое объяснилось, когда с 1970 г. начались интенсивные исследования уже с бортов спутников, оснащенных рентгеновскими телескопами. Вскоре было найдено, что два известных источника имеют в рентгене пульсации. Эти пульсации обнаруживали также периодические колебания, говорящие об орбитальных движениях этих чисто рентгеновских пульсаров. Источник Геркулес Х-1 пульсировал с периодом 1.24 с и имел орбитальный период 1.70 сут, а Центавр Х-3, соответственно, 4.842 с и 2.087 сут.

Более того, рентгеновское излучение источника Центавр Х-3 периодически "выключается" совсем, когда этот объект при движении по орбите затмевается не излучающим в рентгене компонентом двойной системы. В принципе, по длительности паузы можно вычислить диаметр последнего. Он получился соответствующим диаметру сверхгиганта. Именно такой голубой сверхгигант и был обнаружен в 1973 г. на месте Центавра Х-3. А источник Геркулес Х-1 был отождествлен с одной из ранее известных переменных звезд.

Теперь обнаружены рентгеновские пульсары с периодами пульсаций от долей секунд до десятков минут. Основываясь на коротких пульсациях и на единстве природы наблюдаемого явления, следует заключить, что и здесь мы имеем дело с излучением нейтронных звезд. Но в отличие от нейтронных звезд, пульсирующих в радиодиапазоне, периоды рентгеновских пульсаров не возрастают со временем, а постепенно убывают. Рентгеновские пульсары имеют, по-видимому, другой источник энергии излучения, е которым мы познакомимся в конце этой главы.

Большой удачей для исследователей было обнаружение в 1979 г. в созвездии Орла уникального непульсирующего источника рентгеновского излучения в остатке сверхновой, обозначенном W 50. Этот источник совпал с компактным радиоисточником в остатке сверхновой и со звездой 14-й величины, которая еще ранее попала в каталог звезд с необычными спектрами и получила наименование SS 433.

Спектр такого объекта, активного во всех спектральных диапазонах, заслуживал внимательного изучения. В нем не оказалось линий поглощения, зато каждая линия излучения выглядела тройной: по обе стороны главных линий находились линии-спутники. Они систематически перемещались то навстречу друг другу, то в противоположном направлении периодом 164 дня. Доплеровское смещение "спутников" в крайних положениях соответствовало скорости излучающего газа -80000 км/с и +80000 км/с, т. е. превышало четверть скорости света! Вместе с тем, судя по наличию линий водорода, температура этого газа была порядка 10 000 К.

Поведение линий в спектре SS 433 объяснялось тем, что из его центрального объекта в противоположных направлениях били две сильные струи газа, а сама линия газовых струй обращалась с периодом 164 сут. Это вскоре подтвердилось, когда с помощью орбитального рентгеновского телескопа "Обсерватории им. Эйнштейна", было получено рентгеновское изображение SS 433. На "рентгеновском снимке" видны обе узкие струи, идущие от SS 433 до периферии остатка W 50.

Расстояние до SS 433 около 4 кпс, межзвездное поглощение достигает 8 звездных величин. С учетом этого обстоятельства оптическая светимость объекта получается 1038 эрг/с, рентгеновская 1035 эрг/с и в радиодиапазоне 1032 эрг/с. Энергия движущегося в струях газа равна 1038 эрг/с. Подсчитано, что эта энергия может разогреть оболочку W 50 за тысячу лет до температуры в несколько миллионов кельвинов.

Что же собой представляет этот экзотический объект? Путь к разгадке лежит в изучении самого объекта. Центральные компоненты спектральных линий SS 433 показывают перемещения с периодом 13 суток и изменения скорости движения от -73 до +73 км/с. По-видимому, здесь мы наблюдаем тесную двойную систему, состоящую из оптически наблюдаемого горячего сверхгиганта классов О или В и невидимого в оптике рентгеновского компонента. Сверхгигант имеет массу более десяти солнечных, он раздулся до предельных границ собственной зоны тяготения пополняет, своим газом диск, окружающий по экватору вращения рентгеновский компонент. Плоскость диска перпендикулярна оси вращения компактного объекта, каким является рентгеновский компонент, а не лежит в орбитальной плоскости двойной системы. Поэтому диск и обе газовые струи ведут себя как наклонно вращающийся волчок, причем ось их вращения прецессирует (описывает конус), совершая один оборот за 164 сут (это известное явление прецессии вращающихся тел)

Рентгеновский компонент, пожирающий газ диска и выбрасывающий струи, может быть нейтронной звездой. Считается, что она может выбрасывать избыток захваченного газа у своих магнитных полюсов вдоль открытых силовых линий (в этом случае струи перпендикулярны газовому диску). По другой схеме нейтронная звезда отбрасывает избытки газа магнитным вращающимся полем в плоскости ее магнитного экватора. Выбор между гипотезами еще не сделан.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...