Индукция синтеза белков. Lac-оперон
Теория оперона была предложена на основании данных, полученных при изучении свойств лактозного оперона (laс -оперона) Е. coli, т.е. оперона, в котором закодированы белки, участвующие в усвоении лактозы. Клетки Е. coli обычно растут на среде, используя в качестве источника углерода глюкозу. Если в среде культивирования глюкозу заменить на дисахарид лактозу, то по прошествии нескольких минут клетки адаптируются к изменившимся условиям. Они начинают продуцировать 3 белка, обеспечивающих утилизацию лактозы. Один из этих белков - фермент β-галактозидаза, катализирующий гидролитическое Рис. 4-46. Гидролиз лактозы β-галактозидазой. расщепление лактозы до глюкозы и галактозы. В присутствии глюкозы клетки Е. coli содержат менее 10 молекул этих ферментов на клетку. Перенос клеток на среду, содержащую лактозу, вызывает индукцию - увеличение количества молекул каждого из ферментов до 5000 (рис. 4-47). Теория оперона объясняет это явление следующим образом. В отсутствие индуктора (лактозы) белок-репрессор связан с оператором. А поскольку участки оператора и промотора перекрываются, то присоединение репрессора к оператору препятствует связыванию РНК-полимеразы с промотором, и транскрипция структурных генов оперона не идёт. Когда в среде появляется индуктор, т.е. лактоза, то он присоединяется к белку-репрессору, изменяет его конформацию и снижает сродство к оператору. РНК-полимераза связывается с промотором и транскрибирует структурные гены. 3. Репрессия синтеза белков. Триптофановый Снижение концентрации фермента в бактериальной клетке может осуществляться путём репрессии синтеза ферментов. Сущность этого механизма регуляции заключается в следующем: когда клетки Е. coli растут на среде, содержащей в качестве единственного источника азота соль аммония, то им приходится синтезировать все азотсодержащие вещества. Такие клетки, в частности, должны содержать все ферменты, необходимые для синтеза 20 различных аминокислот. Однако если добавить в среду культивирования одну из аминокислот, например триптофан или гистидин, то клетка перестанет вырабатывать весь набор ферментов, необходимых для синтеза этих аминокислот из аммиака и источника углерода. Репрессия синтеза ферментов, катализирующих последовательность реакции метаболического пути конечным продуктом, как это имеет место в случае ферментов синтеза гастидина или триптофана, называется репрессией конечным продуктом.
Это явление теория оперона объясняет следующим образом: при отсутствии в среде Гис или Три регуляторный белок-репрессор не имеет сродства к оператору и происходит синтез ферментов, осуществляющих образование этих аминокислот. Когда в среду добавляют, например, Гис, то эта небольшая молекула, получившая название "корепрессор", присоединяется к белку-репрессору. В результате конформационных изменений в молекуле репрессора комплекс бел-ка-репрессора и корепрессора (Гис) приобретает сродство к оператору, присоединяется к нему, и транскрипция оперона прекращается, т.е. прекращается считывание информации о строении 10 ферментов, участвующих в синтезе этой аминокислоты (рис. 4-48). Следует иметь в виду, что репрессия и индукция синтеза белков у прокариотов реализуют принципы адаптации к меняющимся условиям существования и клеточной экономии: ферменты появляются в клетках, когда в них существует потребность, и перестают вырабатываться, если потребность исчезает. Оперон Регуляция биосинтеза белков-ферментов в соответствии с концепцией оперона
Оперон, группа функционально связанных между собой генов, детерминирующих синтез белков-ферментов, относящихся к последовательным этапам какого-либо биохимического процесса. Концепция О. как часть теории генетической организации и регуляции выдвинута в 1961 французским учёными Ф. Жакобом и Ж. Моно на основе экспериментальных работ по синтезу индуцируемых ферментов у мутантов кишечной палочки. Регуляторная функция О. осуществляется на стадии транскрипции, т. е. при образовании информационной, или матричной, рибонуклеиновой кислоты (м-РНК) на соответствующем участке дезоксирибонуклеиновой кислоты (ДНК). В начале О. обычно локализован промотор — инициирующий транскрипцию участок ДНК, с которым специфически связывается фермент РНК-полимераза, осуществляющая транскрипцию О. (см. рис.). За промотором расположен оператор — участок ДНК, с которым взаимодействует регуляторный белок — репрессор. Остальную часть О. составляют структурные гены, содержащие информацию о последовательности аминокислот в полипептидных цепях белков (см. Генетический код).Репрессоры синтезируются под контролем генов-регуляторов, необязательно входящих в данный О. Взаимодействуя с оператором, репрессор влияет на скорость транскрипции структурных генов. Репрессор, с одной стороны, способен "узнавать" последовательность оснований ДНК оператора, с другой — взаимодействовать с низкомолекулярными веществами — эффекторами, являющимися чаще всего субстратами или продуктами действия ферментов, определяемых данным О. Эффекторы резко меняют сродство репрессора к оператору; некоторые его снижают, другие повышают. Когда репрессор связан с оператором, он препятствует движению РНК-полимеразы вдоль О., и синтез м-РНК тормозится, "выключается". Отделение репрессора от оператора приводит к "включению" О. Т. о., оператор определяет активность О. в целом. Описанная регуляция называется негативной, или отрицательной. Существует и позитивная, или положительная, регуляция, осуществляемая белком-активатором, который, присоединяясь к начальной части О. (перед промотором), активирует транскрипцию О. Конец О. — последовательность нуклеотидов, с которыми связан специфический белок — т.н. терминатор, прерывающий синтез РНК. Полагают, что в клетках высших организмов сохраняются основные черты описанных механизмов регуляции.
Концепция О. оказалась весьма плодотворной для развития молекулярной генетики и в дальнейшем была подтверждена многими исследователями с использованием как генетических, так и биохимических подходов. Из представлений об О. следует, что активность гена в клетке упорядочена и зависит как от внешних условий, так и от деятельности др. генов; они также позволяют понять, каким образом генетический аппарат клетки адекватно реагирует на изменение внешних условий.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|