Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Структура симистора содержит пять слоёв, что отражено на рисунке




Симисторы нашли широкое применение в устройствах регулирования скорости вращения электродвигателей, в системах освещения, в электронагревателях, в преобразовательных установках.

 

БИЛЕТ 15. 15. Аналоговые функциональные блоки (узлы); решаемые ими задачи. Функциональный узел – часть схемы, выполняющая определенную функцию схемы и имеющая входы/выходы.   Аналоговые функциональные блоки (узлы): Генератор, Усилитель, Фильтр, Детектор (амплитудный, частотный, фазовый, синхронный), Смеситель, Модулятор, Интегратор, Дифференциатор, Сумматор, Перемножитель, Компаратор, Устройство задержки, Селектор (временной, амплитудный) и др. Аналоговый функциональный блок, блок операционный — совокупность элементов АВМ структурного типа, которые реализуют какую-либо одну математическую операцию. Эти элементы объединяются в систему для решения задач в соответствии со структурной схемой модели, образуя модель задачи. 35. SMD резисторы; типы и конструкция. SMD резисторы – то есть для поверхностного монтажа, без ножек. Конструкция – кусочек металла с определенным сопротивлением, и две контактные площадки для пайки. 55. Транзисторы биполярные (устройство, параметры, обозначение, конструкции, применения). Биполярный транзистор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Основная схема структуры биполярного транзистора представлена на рис. 1. Рис. 1. Простейшая схема устройства транзистора Электрод, подключённый к центральному слою, называют базой, электроды, подключённые к внешним слоям, называют коллектором и эмиттером. На простейшей схеме различия между коллектором и эмиттером не видны. В действительности же коллектор отличается от эмиттера, главное отличие коллектора — бо́льшая площадь p-n-перехода. Кроме того, для работы транзистора абсолютно необходима малая толщина базы. Условное обозначение биполярного транзистора приведено на рис. 2 Рис. 2. Условное обозначение биполярного транзистора Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n- и p-n-p-транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный). В биполярном транзисторе, в отличие от полевых, основными носителями являются и электроны, и дырки (от слова «би» — «два»). Биполярные транзисторы используются для усиления и коммутации сигналов и обычно работают в активном режиме, т.е. когда переход база-эмиттер открыт, а база-коллектор закрыт. При этом ток коллектора будет протекать через оба перехода, а ток базы только через переход база-эмиттер. Таким образом, ток эмиттера будет равен сумме токов базы и коллектора (Iэ=Iб + Iк). Для понимания принципа работы, рассмотрим n-p-n-транзистор, все рассуждения повторяются абсолютно аналогично для случая p-n-p- транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n-транзисторе электроны, основные носители тока в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер. Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, большая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они — неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α=0.9–0.999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен: β = α / (1−α) =(10÷1000). Также коэффициент β может быть выражен как отношение приращения тока коллектора к приращению тока базы: Таким образом, изменяя малый ток базы, можно управлять значительно большим током коллектора. Схемы включения биполярного транзистора Существует несколько схем включения биполярного транзистора: 1. Схема включения с общей базой; 2. Схема включения с общим эмиттером; 3. Схема включения с общим коллектором; Любая схема включения транзистора характеризуется такими основными показателями: 1. Коэффициент усиления по току ΔIвых\ΔIвх; 2. Входное сопротивление Rвх=ΔUвх\ΔIвх; 3. Выходное сопротивление Rвых.  

 

  БИЛЕТ 16. 16. Цифровые функциональные блоки (узлы); решаемые ими задачи. Функциональный узел – часть схемы, выполняющая определенную функцию схемы и имеющая входы/выходы. Цифровые функциональные блоки (узлы): 1) Инвертор 2) Логический перемножитель (лог.И) 3)Логический сумматор (лог. ИЛИ) 4) Сумматор по модулю 2 (Искл.ИЛИ) 5) Триггер 6)Регистр 7)Счетчик 8) Мультиплексоры, демультиплексоры 9)Преобразователи кода (шифраторы, дешифраторы). 10)Сумматор 11)Перемножитель 12)Компаратор 13) Арифметико-логическое устройство (АЛУ) 14)Запоминающее устройство. 15) ЦАП АЦП и др. 36. Применение резисторов в электронных схемах (делители напряжения, сумматоры, ограничит. тока, подтяжка, согласование дл. линий, аттенюаторы П и Т образные, матрица R-2R; примеры схем). Делитель напряжения — устройство, в котором входное и выходное напряжение связаны коэффициентом передачи Простейший резистивный делитель напряжения представляет собой два последовательно включённых резистора и , подключённых к источнику напряжения . Поскольку резисторы соединены последовательно, то ток через них будет одинаков в соответствии с Первым правилом Кирхгофа. Падение напряжения на каждом резисторе согласно закону Ома будет пропорционально сопротивлению (ток, как было установлено ранее, одинаков): . Для каждого резистора: Разделив выражение для на выражение для в итоге получаем: Таким образом, отношение напряжений и в точности равно отношению сопротивлений и . Используя равенство , в котором , а И, выражая из него соотношение для тока: Получим формулу, связывающую выходное () и входное () напряжение делителя: Сумматор — устройство, преобразующее информационные сигналы (аналоговые или цифровые) в сигнал, эквивалентный сумме этих сигналов. В зависимости от формы представления информации различают сумматоры аналоговые и цифровые. По способу действия: 1) Последовательные (одноразрядные), в которых обработка разрядов чисел ведётся поочерёдно, разряд за разрядом, на одном и том же одноразрядном оборудовании; 2) Параллельные (многоразрядные), в которых слагаемые складываются одновременно по всем разрядам, и для каждого разряда имеется своё оборудование; Ограничитель тока - устройство, препятствующее возрастанию выше допустимых или заданных амплитуды или действующего значения силы тока короткого замыкания в электрической сети. Ограничение токов короткого замыкания позволяет снизить требования к термической и динамической устойчивости электропередачи. Подтягивающий резистор — резистор, включенный между проводником, по которому распространяется электрический сигнал, и питанием, либо между проводником и землей. Цепь с подтягивающим резистором можно сравнить с делителем напряжения из двух резисторов - большого подтягивающего, и очень маленького на месте кнопки или открытого стока. Аттенюатор— устройство для плавного, ступенчатого или фиксированного понижения интенсивности электрических или электромагнитных колебаний, как средство измерений является мерой ослабления электромагнитного сигнала, но одновременно, его можно рассматривать и как измерительный преобразователь. Аттенюатор — это электронное устройство, которое уменьшает амплитуду или мощность сигнала без существенного искажения его формы. Фиксированные аттенюаторы используются, чтобы уменьшить напряжение, рассеять мощность, а также улучшить согласование с линией. Основными схемами, используемыми в аттенюаторах, являются аттенюаторы П-типа и T-типа. Они могут потребоваться, чтобы сбалансировать или разбалансировать сети в зависимости от геометрии линии, с которой они будут использоваться, сбалансированной или несбалансированной. Например, аттенюаторы, используемые с коаксиальными линиями, должны быть в несбалансированной форме, в то время как аттенюаторы для работы с витой парой должны быть в сбалансированной форме. Матрица Рассмотрим матрицу, изображенную на рисунке. Очевидно, что если все ключи находятся в положении "0", то выходное напряжение будет равно нулю. Можно посчитать, что если ключ нулевого разряда установлен в положение "1", а все остальные в положение "0", то Uвых=V*1/16; если ключ первого разряда установлен в положение "1", а все остальные в положение "0", то Uвых=V*1/8; если ключи нулевого и первого разрядов установлены в положение "1", а все остальные в положение "0", то Uвых=V*(1/16+1/8), и так далее... В общем случае получим: Uвых=V*(А0*1/16+А1*1/8+А2*1/4+А3*1/2), где Аi=1, если соответствующий ключ (Кi) находится в положении "1" и Аi=0, если соответствующий ключ находится в положении "0". То есть, замыкая различными способами ключи К0...К3 (или, по другому говоря, подавая на вход четырехбитное число A3A2A1A0) мы можем получить 2 4=16 различных значений выходного напряжения (от Uвых=0 до Uвых=V*(1-1/16) с шагом =V*1/16). Таким образом, данная схема представляет собой простейший параллельный четырехбитный цифро-аналоговый преобразователь. Аналогичным образом можно построить восьми, десяти, двенадцати и вообще n-битный ЦАП. В общем случае, для n-битного ЦАП будем иметь: Uвых=V* ( Ai*1/2n-i), где i - номер разряда (i=0, 1, 2... n-1), Ai=1, если соответствующий ключ замкнут на шину питания и Ai=0, если соответствующий ключ замкнут на общий провод.шаг в этом случае определяется по формуле: =V/2n, где n - общее число разрядов   56. Статические характеристики биполярных транзисторов (входные, выходные). Статическими характеристиками называются зависимости между входными и выходными токами и напряжениями транзистора при отсутствии нагрузки. Каждая из схем включения транзистора характеризуется четырьмя семействами статических характеристик: Входные характеристики – это зависимость входного тока от входного напряжения при постоянстве напряжения на выходе: Выходные характеристики – это зависимость выходного тока от выходного напряжения при фиксированном значении входного тока:
БИЛЕТ 17. 17. Обозначение ф. б. на структурных и функциональных схемах. 37. Переменные и подстроечные резисторы конструкция, применения. Переменный резистор (реостат) – резистор с возможностью изменять его сопротивление в процессе использования. То есть крутим ручку, сопротивление меняется. 1_ Проволочный реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, натянутой на раму. Проволока проходит через несколько контактов. Соединяя с нужным контактом, можно получить нужное сопротивление. 2_ Ползунковый реостат. Состоит из проволоки из материала с высоким удельным сопротивлением, виток к витку натянутой на стержень из изолирующего материала. Проволока покрыта слоем окалины, который специально получается при производстве. При перемещении ползунка с присоединённым к нему контактом слой окалины соскабливается, и электрический ток протекает из проволоки на ползунок. Чем больше витков от одного контакта до другого, тем больше сопротивление. 3_ Жидкостный реостат, представляющий собой бак с электролитом, в который погружаются металлические пластины. Обеспечивается плавное регулирование. Величина сопротивления реостата пропорциональна расстоянию между пластинами, и обратно пропорциональна площади части поверхности пластин, погруженной в электролит. 4_ Ламповый реостат. Состоит из набора параллельно включённых ламп накаливания. Изменением количества включённых ламп изменялось сопротивление реостата. Недостатком лампового реостата является зависимость его сопротивления от степени разогрева нитей ламп. Подстроечный резистор — переменный резистор, предназначенный для тонкой настройки радиоэлектронного устройства в процессе его монтажа или ремонта. Эти компоненты устанавливаются внутри корпуса устройства и недоступны для пользователя при нормальной эксплуатации.   57. Транзисторы полевые (устройство, параметры, обозначение, конструкции, применения). Полевой транзистор – это полупроводниковый прибор, в котором ток, протекающий через канал, управляется электрическим полем, возникающим при приложении напряжения между затвором и истоком, и предназначенный для усиления мощности электрических колебаний. Принцип действия полевых транзисторов основан на использовании носителей заряда только одного знака (электронов или дырок). Управление током в полевых транзисторах осуществляется изменением проводимости канала, через который протекает ток транзистора под воздействием электрического поля. Вследствие этого транзисторы называют полевыми. Основные параметры - Максимальный ток стока Iс max (при Uзи = 0); - Максимальное напряжение сток-исток Uси max; - Напряжение отсечки Uзи отс; - Внутреннее (выходное) сопротивление ri − представляет собой сопротивление транзистора между стоком и истоком (сопротивление канала); - Для переменного тока: - Крутизна стоко-затворной характеристики: ; - Отображает влияние напряжение затвора на выходной ток транзистора; - Входное сопротивление при Uси=const транзистора определяется сопротивлением р-n-переходов, смещенных в обратном направлении. Входное сопротивление полевых транзисторов с р-n-переходом довольно велико (достигает единиц и десятков мегаом), (107-109Ом) что выгодно отличает их от биполярных транзисторов. Применение Значительная часть производимых в настоящий момент полевых транзисторов входит в состав КМОП-структур, которые строятся из полевых транзисторов с каналами разного (p- и n-) типа проводимости и широко используются в цифровых и аналоговых интегральных схемах. За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов). Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные кварцевые часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет, потому что практически не потребляют энергии. Полевой транзистор с изолированным затвором (МДП-транзистор) – это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. Основные параметры: Параметры МДП-транзисторов аналогичны параметрам полевых транзисторов с р-n-переходом.. Что касается входного сопротивления то МДП-транзисторы имеют лучшие показатели, чем транзисторы с р-n-переходом. Входное сопротивление у них составляет rвх =1012...1014 Ом.    
  БИЛЕТ 18. 18. Цепи с сосредоточенными и распределёнными параметрами. Электрические цепи, в которых индуктивность L, емкость С, активное сопротивление R сосредоточены в катушке, конденсаторе и резисторе называются цепями с сосредоточенными параметрами. Однако имеются электрические цепи, в которых индуктивность, емкость и активное сопротивление распределены по длине цепи, например, в линиях передачи электромагнитных колебаний (в двухпроводных линиях, в фидерах, в волноводах). Такие цепи называются цепями с распределенными параметрам или длинными линиями. Одна и та же цепь может вести себя как система с сосредоточенными или распределенными параметрами в зависимости от частоты (длины волны) сигнала, который действует в данной цепи. 38. Варистосторы, терморезисторы, тензорезисторы, фоторезисторы, мемристоры. Варистор — полупроводниковый резистор, электрическое сопротивление (проводимость) которого нелинейно зависит от приложенного напряжения, то есть обладающий нелинейной симметричной вольт-амперной характеристикой и имеющий два вывода. Вольт-амперные характеристики варисторов: синие — на основе ZnO, красные — на основе SiC. Нелинейность характеристик варисторов обусловлена локальным нагревом соприкасающихся граней многочисленных кристаллов карбида кремния (или иного полупроводника). При локальном повышении температуры на границах кристаллов сопротивление последних существенно снижается, что приводит к уменьшению общего сопротивления варисторов. Конструктивно варисторы выполняются обычно в виде дисков, таблеток, стержней; существуют бусинковые и плёночные варисторы. Широкое распространение получили стержневые подстроечные варисторы с подвижным контактом. Один из основных параметров варистора — коэффициент нелинейности λ — определяется отношением его статического сопротивления R к динамическому сопротивлению R d: , где U и I — напряжение и ток варистора. Коэффициент нелинейности лежит в пределах 2-10 у варисторов на основе SiC и 20-100 у варисторов на основе ZnO. Температурный коэффициент сопротивления варистора — отрицательная величина. Варисторы применяются для стабилизации и регулирования низкочастотных токов и напряжений, в аналоговых вычислителях— для возведения в степень, извлечения корней и других математических действий, в цепях защиты от перенапряжений(например, высоковольтные линии электропередачи, линии связи, электрические приборы) и др. Высоковольтные варисторы применяются для изготовления ограничителей перенапряжения. Термистор — полупроводниковый резистор, сопротивление которого существенно убывает с ростом температуры. Терморезистор изготовляют в виде стержней, трубок, дисков, шайб, бусинок и тонких пластинок. Их размеры могут варьироваться в пределах от 1—10 мкм до 1—2 см. Основными параметрами терморезистора являются: номинальное сопротивление, температурный коэффициент сопротивления, интервал рабочих температур, максимально допустимая мощность рассеяния. Изготовляются также терморезисторы специальной конструкции — с косвенным подогревом. В таких терморезисторах имеется подогревная обмотка, изолированная от полупроводникового резистивного элемента (если при этом мощность, выделяющаяся в резистивном элементе, мала, то тепловой режим терморезистора определяется температурой подогревателя, то есть током в нём). Таким образом, появляется возможность изменять состояние терморезистора, не меняя ток через него. Такой терморезистор используется в качестве переменного резистора, управляемого электрически на расстоянии. Тензорезистор Тензорезистор — резистор, сопротивление которого изменяется в зависимости от его деформации. С помощью тензорезисторов можно измерять деформации механически связанных с ними элементов, тензорезистор является основной составной частью тензодатчиков, применяющихся для косвенного измерения силы, давления, веса, механических напряжений, крутящих моментов и пр.     Фоторезистор Фоторезистор — полупроводниковый прибор, изменяющий величину своего сопротивления при облучении светом. Для изготовления фоторезисторов используют полупроводниковые материалы с шириной запрещенной зоны, оптимальной для решаемой задачи. Так, для регистрации видимого света используются фоторезисторы из селенида и сульфида кадмия, Se. Для регистрации инфракрасного излучения используются Ge, Si, PbS. Полупроводник наносят в виде тонкого слоя на стеклянную или кварцевую подложку или вырезают в виде тонкой пластинки из монокристалла. Слой или пластинку полупроводника снабжают двумя электродами и помещают в защитный корпус. Важнейшие параметры фоторезисторов: 1_ интегральная чувствительность — отношение изменения напряжения на единицу мощности падающего излучения (при номинальном значении напряжения питания); 2_ порог чувствительности — величина минимального сигнала, регистрируемого фоторезистором, отнесённая к единице полосы рабочих частот. Мемристор Мемристор — пассивный элемент в микроэлектронике, способный изменять свое сопротивление в зависимости от протекавшего через него заряда (интеграла тока за время работы). обозначение на схеме   58. Статические характеристики полевых транзисторов (проходные, выходные). Стоковые (выходные) характеристики полевого транзистора с р-n- переходом и каналом n- типа показаны на рисунке а). Они отражают зависимость тока стока от напряжения Uси при фиксированном напряжении Uзи: Ic = f(Uси) при Uзи = const Стоко - затворная (входная) характеристика полевого транзистора показывает зависимость тока Iс от напряжения Uзи при фиксированном напряжении Uси: Ic = f(Uси) при Uси = const рисунок б).  
         

 

 

БИЛЕТ 19. 19. Элементная база аналоговой и цифровой электроники. Цифровое устройство – техническое устройство или приспособление, предназначенное для получения и обработки информации в цифровой форме, используя цифровые технологии. Физически цифровое устройство может быть выполнено на различной элементной базе: электромеханической (на электромагнитных реле), электронной (на диодах и транзисторах), микроэлектронной (на микросхемах), оптической. В последнее время, ввиду достижений микро- и наноэлектроники, широкое распространение получили цифровые устройства на микроэлектронной элементной базе. Примерами цифровых устройств являются широко распространённые сотовые телефоны, цифровые фотоаппараты, цифровыевидеокамеры, веб-камеры, компьютеры, цифровое телевидение, DVD-проигрыватели. Аналоговые электронные устройства (АЭУ) – это устройства усиления и обработки аналоговых электрических сигналов, выполненные на основе электронных приборов. Преобразователи электрических сигналов (активные устройства аналоговой обработки сигналов) – выполняются на базе усилителей, либо путем непосредственного применения последних со специальными цепями обратных связей, либо путем некоторого их видоизменения. Сюда относят устройства суммирования, вычитания, логарифмирования, антилогарифмирования, фильтрации, детектирования, перемножения, деления, сравнения и др. Преобразователи сопротивлений – выполняются на основе усилителей с обратными связями. Они могут преобразовывать величину, тип, характер сопротивления. Используют их в некоторых устройствах обработки сигналов. Особый класс составляют всевозможные генераторы и связанные с ними устройства. 39. Конденсаторы, основные параметры: электрическая ёмкость, рабочее напряжение и напряжение пробоя. Конденсатор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным электронным компонентом. Обычно состоит из двух электродов в форме пластин (называемых обкладками), разделённых диэлектриком, толщина которого мала по сравнению с размерами обкладок. Емкость Основной характеристикой конденсатора является его ёмкость, характеризующая способность конденсатора накапливатьэлектрический заряд. В обозначении конденсатора фигурирует значение номинальной ёмкости, в то время как реальная ёмкость может значительно меняться в зависимости от многих факторов. Реальная ёмкость конденсатора определяет его электрические свойства. Так, по определению ёмкости, заряд на обкладке пропорционален напряжению между обкладками (q =CU). Типичные значения ёмкости конденсаторов составляют от единиц пикофарад до сотен микрофарад. Ёмкость плоского конденсатора, состоящего из двух параллельных металлических пластин площадью S каждая, расположенных на расстоянии d друг от друга, в системе СИ выражается формулой: , где — относительная диэлектрическая проницаемость среды, заполняющей пространство между пластинами (в вакууме равна единице), — электрическая постоянная, численно равная 8,854187817.....* 10 -12(эта формула справедлива, лишь когда d много меньше линейных размеров пластин). Для получения больших ёмкостей конденсаторы соединяют параллельно. При этом напряжение между обкладками всех конденсаторов одинаково. Общая ёмкость батареи параллельно соединённых конденсаторов равна сумме ёмкостей всех конденсаторов, входящих в батарею. Эта ёмкость всегда меньше минимальной ёмкости конденсатора, входящего в батарею. Однако при последовательном соединении уменьшается возможность пробоя конденсаторов, так как на каждый конденсатор приходится лишь часть разницы потенциалов источника напряжения. Если площадь обкладок всех конденсаторов, соединённых последовательно, одинакова, то эти конденсаторы можно представить в виде одного большого конденсатора, между обкладками которого находится стопка из пластин диэлектрика всех составляющих его конденсаторов. Рабочее напряжение Другой, не менее важной характеристикой конденсаторов является номинальное напряжение — значение напряжения, обозначенное на конденсаторе, при котором он может работать в заданных условиях в течение срока службы с сохранением параметров в допустимых пределах. Напряжение пробоя Пробой конденсатора – это неисправность, связанная с изменением сопротивления диэлектрика между обкладками конденсатора вследствие превышения допустимого рабочего напряжения на обкладках конденсатора. Напряжение пробоя - это то напряжение при котором происходит пробой. 59. IGBT – транзисторы (устройство, параметры, обозначение, конструкции, применения). IGBT— биполярный транзистор с изолированным затвором — трёхэлектродный силовой электронный прибор, используемый, в основном, как мощный электронный ключ в импульсных источниках питания, инверторах, в системах управления электрическими приводами.   По своей внутренней структуре IGBT представляет собой каскадное включение двух электронных ключей: входной ключ на полевом транзисторе управляет мощным оконечным ключом на биполярном транзисторе. Управляющий электрод называется затвором как у ПТ, два других электрода — эмиттером и коллектором как у биполярного. Такое составное включение ПТ и БТ позволяет сочетать в одном устройстве достоинства обоих типов полупроводниковых приборов. Выпускаются как отдельные IGBT, так и силовые сборки (модули) на их основе, например, для управления цепями трёхфазного тока. Условное графическое обозначение IGBT. Структура IGBT-транзистора. Упрощённая эквивалентная схема БТИЗ Условное обозначение БТИЗ (IGBT) на принципиальных схемах. Поскольку IGBT транзистор имеет комбинированную структуру из полевого и биполярного транзистора, то и его выводы получили названия затвор - З (управляющий электрод), эмиттер (Э) и коллектор (К). На зарубежный манер вывод затвора обозначается буквой G, вывод эмиттера – E, а вывод коллектора – C. Условное обозначение БТИЗ (IGBT) На рисунке показано условное графическое обозначение биполярного транзистора с изолированным затвором. Транзистор также может изображаться со встроенным быстродействующим диодом. Также IGBT транзистор может изображаться следующим образом:   ПРИМЕНЕНИЕ: Основное применение IGBT — это инверторы, импульсные регуляторы тока, частотно-регулируемые приводы. Широкое применение IGBT нашли в источниках сварочного тока, в управлении мощным электроприводом, в том числе на городском электрическом транспорте. Применение IGBT модулей в системах управления тяговыми двигателями позволяет (по сравнению с тиристорными устройствами) обеспечить высокий КПД, высокую плавность хода машины и возможность применения рекуперативного торможения практически на любой скорости. IGBT применяют при работе с высокими напряжениями (более 1000 В), высокой температурой (более 100 °C) и высокой выходной мощностью (более 5 кВт). IGBT используются в схемах управления двигателями (при рабочей частоте менее 20 кГц), источниках бесперебойного питания (с постоянной нагрузкой и низкой частотой) и сварочных аппаратах (где требуется большой ток и низкая частота — до 50 кГц). IGBT и MOSFET занимают диапазон средних мощностей и частот, частично «перекрывая друг друга». В общем случае, для высокочастотных низковольтных каскадов наиболее подходят MOSFET, а для высоковольтных мощных — IGBT. В некоторых случаях IGBT и MOSFET полностью взаимозаменяемы, цоколевка приборов и характеристики управляющих сигналов обоих устройств обычно одинаковы. IGBT и MOSFET требуют 12—15 В для полного включения и не нуждаются в отрицательном напряжении для выключения. Но «управляемый напряжением» не значит, что схеме управления не нужен источник тока. Затвор IGBT или MOSFET для управляющей схемы представляет собой конденсатор с величиной емкости, достигающей тысяч пикофарад (для мощных устройств). Драйвер затвора должен «уметь» быстро заряжать и разряжать эту емкость, чтобы гарантировать быстрое переключение транзистора.  
БИЛЕТ 20. 20. Примеры схем и обозначения. Структурная схема (ее раньше называли еще и блок-схемой) определяет основные функциональные части изделия, их назначение и взаимосвязь. Отдельные узлы или части устройства обозначаются прямоугольниками, а связи между ними показываются линиями, стрелки на которых указывают направление прохождения сигналов. Чтобы деревья не загораживали леса на первом этапе разработки и не приходилось отвлекаться на мелочи (например сколько и каких резисторов, конденсаторов и транзисторов поставить), обдумывать идею, (да и рассказывать про нее) лучше на уровне прямоугольников. В таком виде проще представить взаимодействие между функциональными узлами: величину и форму сигналов, очередность их поступления и т.п. И лишь затем, состыковав отдельные узлы между собой и увязав сигналы, можно рисовать принципиальные схемы. Функциональная схема помогает понять процессы, происходящие в отдельных узлах (блоках) устройства. Она является переходной от структурной к принципиальной. На ней подробно изображаются те части, которые необходимы для понимания описываемых процессов, а второстепенные элементы или узлы изображаются в виде прямоугольников. К примеру, цепи питания и т.п. на такой схеме можно не детализировать. Для обозначения прямоугольников на структурных и функциональных схемах можно использовать русские и латинские (латинские предпочтительнее) буквы и цифры. Существуют и специальные обозначения функциональных узлов, основные из которых показаны на рисунке. Принципиальная схема дает полное представление об электрическом устройстве данного прибора. На принципиальной схеме в виде условных графических обозначений (УГО) показываются все электрические элементы, входящие в состав прибора, указываются их номиналы и связи между ними. Принципиальная схема является основным видом схемы, используемой в радиотехнике. Хотя она не дает наглядного представления о действительном виде конструкции, однако позволяет детально разобраться в принципах ее работы. Схема соединений (монтажная) - это схема, которая показывает внешние и внутренние соединения между конструктивно законченными узлами изделия. Изображения элементов даются в виде прямоугольников, УГО или внешних очертаний. На монтажной схеме воспроизводятся в точном соответствии с реальным расположением все провода, кабели и жгуты, указывается марка и сечение проводов На схеме соединений изображаются также элементы монтажа (опорные стойки, переходные и расшивочные колодки), которые обеспечивают его жесткость и удобство распайки. Монтажная схема обычно создается тогда, когда предполагается изготовить несколько однотипных устройств. В этом случае она значительно упрощает сборку и монтаж. Правда, и в случае одного экземпляра устройства монтажка весьма полезна, если через какое-то время приходится его ремонтировать, а сразу вспомнить что где идет бывает очень трудно. 40. Конструкции и обозначения конденсаторов, электролитические конденсаторы, ионисторы. Конденсатор — двухполюсник с определённым значением ёмкости и малой омической проводимостью; устройство для накопления заряда и энергии электрического поля. Конденсатор является пассивным
Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...