Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Токи при размыкании и замыкании цепи




При всяком изменении силы тока в про­водящем контуре возникает э.д.с. само­индукции, в результате чего в контуре появляются дополнительные токи, называ­емые экстратоками самоиндукции. Экстра­токи самоиндукции, согласно правилу Ленца, всегда направлены так, чтобы пре­пятствовать изменениям тока в цепи, т. е. направлены противоположно току, со­здаваемому источником. При выключении источника тока экстратоки имеют такое же направление, что и ослабевающий ток. Следовательно, наличие индуктивности в цепи приводит к замедлению исчезнове­ния или установления тока в цепи.

Рассмотрим процесс выключения тока в цепи, содержащей источник тока с э.д.с. ξ, резистор сопротивлением R и катушку индуктивностью L. Под дей­ствием внешней э.д.с. в цепи течет по­стоянный ток

I 0=ξ/ R

(внутренним сопротивлением источника тока пренебрегаем).

В момент времени t= 0отключим источник тока. Ток через катушку индук­тивности L начнет уменьшаться, что при­ведет к возникновению э.д.с. самоиндук­ции ξ s=-LdI/dt, препятствующей, со­гласно правилу Ленца, уменьшению тока. В каждый момент времени ток в цепи определяется законом Ома I=ξs/R, или

IR=-LdI/dt. (127.1)

Разделив в выражении (127.1) переменные, получим d I/I = -(R/L)dt. Интегрируя

это уравнение по I (от I0 до I) и t (от 0 до t), находим ln(I/I0)=- Rt/L, или

где t=L/R — постоянная, называемая временем релаксации. Из (127.2) следует, что т есть время, в течение которого сила тока уменьшается в е раз.

Таким образом, в процессе отключения источника э.д.с. сила тока убывает по экспоненциальному закону (127.2) и опре­деляется кривой 1 на рис. 183. Чем больше индуктивность цепи и меньше ее сопро­тивление, тем больше т и, следовательно, тем медленнее уменьшается ток в цепи при ее размыкании.

При замыкании цепи помимо внешней э.д.с.ξ возникает э.д.с. самоиндукции

ξs=-LdI/dt, препятствующая, согласно

правилу Ленца, возрастанию тока. По за­кону Ома, IR=ξ+ξs, или

IR = ξ-LdI/dt.

Введя новую переменную u=IR-ξ, пре­образуем это уравнение к виду du/u=-dt/t,

где 1 — время релаксации.

В момент замыкания (t=0) сила тока I =0 и u=-ξ. Следовательно, интегри­руя по и (от -ξ до IR — ξ) и t (от 0 до t).

находим ln(IR -ξ)/-ξ =-t/t, или

 

где I 0/R — установившийся ток (при t®¥)

 

Таким образом, в процессе включения источника э.д.с. нарастание силы тока в цепи задается функцией (127.3) и опре­деляется кривой 2 на рис. 183. Сила тока возрастает от начального значения I =0 и асимптотически стремится к устано­вившемуся значению I 0 =ξ/R. Скорость нарастания тока определяется тем же вре­менем релаксации t =L/R, что и убыва­ние тока. Установление тока происходит тем быстрее, чем меньше индуктивность цепи и больше ее сопротивление.

Оценим значение э.д.с. самоиндук­ции ξ s, возникающей при мгновенном уве­личении сопротивления цепи постоянного тока от R 0 До R. Предположим, что мы размыкаем контур, когда в нем течет уста­новившийся ток I 0=ξ/R0. При размыка­нии цепи ток изменяется по формуле (127.2). Подставив в нее выражение для I 0 и t, получим

Э.д.с. самоиндукции

т. е. при значительном увеличении сопро­тивления цепи (R/R 0 >> 1 ) обладающей большой индуктивностью, э.д.с. самоин­дукции может во много раз превышать э.д.с. источника тока, включенного в цепь. Таким образом, необходимо учиты­вать, что контур, содержащий индуктив­ность, нельзя резко размыкать, так как это (возникновение значительных э.д.с. само­индукции) может привести к пробою изо­ляции и выводу из строя измерительных приборов. Если в контур сопротивление вводить постепенно, то э.д.с. самоиндук­ции не достигнет больших значений.

Взаимная индукция

Рассмотрим два неподвижных контура (1 к 2), расположенных достаточно близко друг от друга (рис. 184). Если в конту­ре 1 течет ток I 1, то магнитный поток, со­здаваемый этим током (поле, создающее этот поток, на рисунке изображено сплош­ными линиями), пропорционален I 1. Обоз-

начим через Ф21 ту часть потока, которая пронизывает контур 2. Тогда

Ф21= L 21/ I 1, (128.1)

где L 21 — коэффициент пропорциональ­ности.

Если ток I 1 изменяется, то в конту­ре 2 индуцируется э.д.с. ξi2, которая по закону Фарадея (см. (123.2)) равна и противоположна по знаку скорости из­менения магнитного потока Ф21, созданно­го током в первом контуре и пронизываю­щего второй:

Аналогично, при протекании в конту­ре 2 тока I2 магнитный поток (его поле изображено на рис. 184 штриховой линией) пронизывает первый контур. Если Ф12— часть этого потока, пронизывающего кон­тур 1, то

Ф12 = L 12 I 2.

Если ток I 2 изменяется, то в контуре 1 ин­дуцируется э.д.с. ξi1, которая равна и противоположна по знаку скорости из­менения магнитного потока Ф12, созданно­го током во втором контуре и пронизываю­щего первый:

Явление возникновения э.д.с. в одном из контуров при изменении силы тока в другом называется взаимной индукцией. Коэффициенты пропорциональности L 21 и L 12 называются взаимной индуктивно­стью контуров. Расчеты, подтверждаемые опытом, показывают, что l 21и L 12равны друг другу, т. е.

L I2 = L 2I. (128.2)

 

 

Коэффициенты L 12и L 21 зависят от гео­метрической формы, размеров, взаимного расположения контуров и от магнитной проницаемости окружающей контуры сре­ды. Единица взаимной индуктивности та же, что и для индуктивности,— ген­ри (Гн).

Рассчитаем взаимную индуктивность двух катушек, намотанных на общий торо­идальный сердечник. Этот случай имеет большое практическое значение (рис. 185). Магнитная индукция поля, со­здаваемого первой катушкой с числом вит­ков N 1, током I 1 и магнитной проницаемо­стью m, сердечника, согласно (119.2),

B=m 0 mN 1 I 1 /l, где l — длина сердечника

по средней линии. Магнитный поток через один виток второй катушки Ф2=BS=m0m(N 1 I 1/ l)S Тогда полный магнитный поток (потокосцепление) сквозь вторичную обмот­ку, содержащую N2 витков,

Поток yсоздается током I 1, поэтому, со­гласно (128.1), получаем

Если вычислить магнитный поток, создава­емый катушкой 2 сквозь катушку 1, то для L 12 получим выражение в соответст­вии с формулой (128.3). Таким образом, взаимная индуктивность двух катушек, намотанных на общий тороидальный сер­дечник,

Трансформаторы

Принцип действия трансформаторов, при­меняемых для повышения или понижения напряжения переменного тока, основан на явлении взаимной индукции. Впервые трансформаторы были сконструированы и введены в практику русским электро­техником П. Н. Яблочковым (1847—1894) и русским физиком И. Ф. Усагиным (1855—1919). Принципиальная схема трансформатора показана на рис. 186.

Первичная и вторичная катушки (обмот­ки), имеющие соответственно n 1и N 2 вит­ков, укреплены на замкнутом железном сердечнике. Так как концы первичной об­мотки присоединены к источнику перемен­ного напряжения с э.д.с. ξ1, то в ней возникает переменный ток I 1, создающий в сердечнике трансформатора переменный магнитный поток Ф, который практически полностью локализован в железном сер­дечнике и, следовательно, почти целиком пронизывает витки вторичной обмотки. Изменение этого потока вызывает во вто­ричной обмотке появление э.д.с. взаим­ной индукции, а в первичной — э.д.с. самоиндукции.

Ток I 1 первичной обмотки определяется согласно закону Ома:

где R 1— сопротивление первичной обмот­ки. Падение напряжения I 1 R 1на сопро­тивлении R 1 при быстропеременных полях мало по сравнению с каждой из двух э.д.с., поэтому

 

 

Э.д.с. взаимной индукции, возникающая во вторичной обмотке,

Сравнивая выражения (129.1) и (129.2), получим, что э.д.с., возникающая во вто­ричной обмотке,

где знак минус показывает, что э.д.с. в первичной и вторичной обмотках противоположны по фазе.

Отношение числа витков N 2 /N 1, по­казывающее, во сколько раз э.д.с. во вторичной обмотке трансформатора боль­ше (или меньше), чем в первичной, на­зывается коэффициентом трансформации.

Пренебрегая потерями энергии, кото­рые в современных трансформаторах не превышают 2 % и связаны в основном с выделением в обмотках джоулевой теп­лоты и появлением вихревых токов, и при­меняя закон сохранения энергии, можем записать, что мощности тока в обеих об­мотках трансформатора практически оди­наковы:

ξ 2 I 2 »ξ 1 I 1, откуда, учитывая соотношение (129.3), найдем

ξ21= I 1/ I 2 = N 2/ N 1,

т. е. токи в обмотках обратно пропорцио­нальны числу витков в этих обмотках.

Если N 2 /N 1>1, то имеем дело с повы­шающим трансформатором, увеличиваю­щим переменную э.д.с. и понижающим ток (применяются, например, для переда­чи электроэнергии на большие расстояния, так как в данном случае потери на джоулеву теплоту, пропорциональные квадрату силы тока, снижаются); если N2/N 1<1, то имеем дело с понижающим трансформатором, уменьшающим э.д.с. и повышающим ток (применяются, на­пример, при электросварке, так как для нее требуется большой ток при низком напряжении).

Мы рассматривали трансформаторы, имеющие только две обмотки. Однако

трансформаторы, используемые в радио­устройствах, имеют 4—5 обмоток, обла­дающих разными рабочими напряжениями. Трансформатор, состоящий из одной об­мотки, называется автотрансформатором. В случае повышающего автотрансформа­тора э.д.с. подводится к части обмотки, а вторичная э.д.с. снимается со всей об­мотки. В понижающем автотрансформато­ре напряжение сети подается на всю об­мотку, а вторичная э.д.с. снимается с части обмотки.

Энергия магнитного поля

Проводник, по которому протекает элек­трический ток, всегда окружен магнитным полем, причем магнитное поле появляется и исчезает вместе с появлением и исчезно­вением тока. Магнитное поле, подобно электрическому, является носителем энер­гии. Естественно предположить, что энер­гия магнитного поля равна работе, которая затрачивается током на создание этого поля.

Рассмотрим контур индуктивностью L, по которому течет ток I. С данным контуром сцеплен магнитный поток (см. (126.1)) Ф= LI, причем при измене­нии тока на d I магнитный поток изменяет­ся на dФ= L d I. Однако для изменения магнитного потока на величину dФ (см. § 121) необходимо совершить работу d A = I dФ= LI d I. Тогда работа по созда­нию магнитного потока Ф будет равна

Следовательно, энергия магнитного поля, связанного с контуром,

W=LI2/2. (130.1)

Исследование свойств переменных маг­нитных полей, в частности распростране­ния электромагнитных волн, явилось до­казательством того, что энергия магнитно­го поля локализована в пространст­ве. Это соответствует представлениям те­ории поля.

Энергию магнитного поля можно пред-

 

 

ставить как функцию величин, характери­зующих это поле в окружающем простран­стве. Для этого рассмотрим частный слу­чай — однородное магнитное поле внутри длинного соленоида. Подставив в формулу (130.1) выражение (126.2), получим

Так как I=Вl/ (m0mN) (см. (119.2)) и В=m 0 mH (см. (109.3)), то

где Sl = V — объем соленоида.

Магнитное поле соленоида однородно и сосредоточено внутри него, поэтому энергия (см. (130.2)) заключена в объеме соленоида и распределена в нем с постоянной объемной плотностью

Выражение (130.3) для объемной плотности энергии магнитного поля имеет вид, аналогичный формуле (95.8) для объемной плотности энергии электроста­тического поля, с той разницей, что элек­трические величины заменены в нем маг­нитными. Формула (130.3) выведена для однородного поля, но она справедлива и для неоднородных полей. Выражение (130.3) справедливо только для сред, для которых зависимость В от Н линейная, т. е. оно относится только к пара- и диамагнетикам (см. § 132).

Контрольные вопросы

• В чем заключается явление электромагнитной индукции? Проанализируйте опыты Фарадея.

• Что является причиной возникновения э.д.с. индукции в замкнутом проводящем контуре? • Отчего и как зависит э.д.с. индукции, возникающая в контуре?

• Почему для обнаружения индукционного тока лучше использовать замкнутый проводник

в виде катушки, а не в виде одного витка провода?

• Сформулируйте правило Ленца, проиллюстрировав его примерами.

• Всегда ли при изменении потока магнитной индукции в проводящем контуре в нем возникает э.д.с. индукции? индукционный ток?

• Возникает ли индукционный ток в проводящей рамке, поступательно движущейся в однород­ном магнитном поле?

• Покажите, что закон Фарадея есть следствие закона сохранения энергии.

• Какова природа э.д.с. электромагнитной индукции?

• Выведите выражение для э.д.с. индукции в плоской рамке, равномерно вращающейся в одно­родном магнитном поле. За счет чего ее можно увеличить?

• Что такое вихревые токи? Вредны они или полезны?

• Почему сердечники трансформаторов не делают сплошными?

• В чем заключаются явления самоиндукции и взаимной индукции? Вычислите э.д.с. индукции

для обоих случаев,

• В чем заключается физический смысл времени релаксации t= L/R Докажите, что оно имеет

размерность времени.

• Приведите соотношение между токами в первичной и вторичной обмотках повышающего транс­форматора.

• Когда э.д.с. самоиндукции больше — при замыкании или размыкании цепи постоянного тока?

• Какая физическая величина выражается в генри? Дайте определение генри.

• В чем заключается физический смысл индуктивности контура? взаимной индуктивности двух контуров? От чего они зависят?

• Запишите и проанализируйте выражения для объемной плотности энергии электростатического и магнитного полей. Чему равна объемная плотность энергии электромагнитного поля?

•Напряженность магнитного поля возросла в два раза. Как изменилась объемная плотность энергии магнитного поля?

 

 

Задачи

15.1. Кольцо из алюминиевого провода (r=26 нОм•м) помещено в магнитное поле перпендику­лярно линиям магнитной индукции. Диаметр кольца 20 см, диаметр провода 1 мм. Опреде­лить скорость изменения магнитного поля, если сила тока в кольце 0,5 А. [0,33 Тл/с]

15.2. В однородном магнитном поле, индукция которого 0,5 Тл, равномерно с частотой 300 мин-1 вращается катушка, содержащая 200 витков, плотно прилегающих друг к другу. Площадь поперечного сечения катушки 100 см2. Ось вращения перпендикулярна оси катушки и направлению магнитного поля. Определить максимальную э.д.с., индуцируемую в катушке. [31,4 В].

15.3. Определить, сколько витков проволоки, вплотную прилегающих друг к другу, диаметром 0,3 мм с изоляцией ничтожной толщины надо намотать на картонный цилиндр диаметром 1 см, чтобы получить однослойную катушку с индуктивностью 1 мГн. [304]

15.4. Определить, через сколько времени сила тока замыкания достигнет 0,98 предельного значе­ния, если источник тока замыкают на катушку сопротивлением 10 Ом и индуктивностью 0,4 Гн. [0,16 с]

15.5. Два соленоида (индуктивность одного L 1=0,36 Гн, второго L 2 = 0,64 Гн) одинаковой длины и практически равного сечения вставлены один в другой. Определить взаимную индуктив­ность соленоидов. [0,48 Гн]

15.6. Автотрансформатор, понижающий напряжение с U 1=5,5 кВ до U 2=220 В, содержит в пер­вичной обмотке N 1 = 1500витков. Сопротивление вторичной обмотки R 2=2 Ом. Сопротивле­ние внешней цепи (в сети пониженного напряжения) R =13 Ом. Пренебрегая сопротив­лением первичной обмотки, определить число витков во вторичной обмотке трансформатора. [68]

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...