Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Особенности выполнения арифметических опреаций




ПРЕДСТАВЛЕНИЕ ДАННЫХ. АРИФМЕТИЧЕСКИЕ ОПЕРАЦИИ

Здесь рассматривается машинное представление целых чисел, строк и адресов. Представление двоично-десятичных чисел, используемых доста­точно редко, не рассматривается. Что касается вещественных чисел, то в ПК нет команд вещественной арифметики (операции над этими числами реа­лизуются программным путем или выполняются сопроцессором) и потому нет стандартного представления вещественных чисел. Кроме того, рассматри­ваются некоторые особенности выполнения арифметических операций.

Шестнадцатиричные числа записываются с буквой h на конце, двоичные

числа - с буквой b (так принято в MASM).

    1.2.1 Представление целых чисел.

В общем случае под целое число можно отвести любое число байтов, однако система команд ПК поддерживает только числа размером в байт и слово и частично поддерживает числа размером в двойное слово. Именно эти форматы и будут рассмотрены.

В ПК делается различие между целыми числами без знака (неотрица­тельными) и со знаком. Это объясняется тем, что в ячейках одного и то­го же размера можно представить больший диапазон беззнаковых чисел, чем неотрицательных знаковых чисел, и если известно заранее, что неко­торая числовая величина является неотрицательной, то выгоднее рассмат­ривать ее как беззнаковую, чем как знаковую.

    Целые числа без знака.

Эти числа могут быть представлены в виде байта, слова или двойного слова - в зависимости от их размера. В виде байта представляются целые от 0 до 255 (=2^8-1), в виде слова - целые от 0 до 65535 (=2^16-1), в виде двойного слова - целые от 0 до 4 294 967 295 (=2^32-1). Числа за­писываются в двоичной системе счисления, занимая все разряды ячейки. Например, число 130 записывается в виде байта 10000010b (82h).

Числа размером в слово хранятся в памяти в "перевернутом" виде: младщие (правые) 8 битов числа размещаются в первом байте слова, а старшие 8 битов - во втором байте (в 16-ричной системе: две правые цифры - в первом байте, две левые цифры - во втором байте). Например, число 130 (=0082h) в виде слова хранится в памяти так:


 

            -----------

            | 82 | 00 |

            -----------

(Отметим, однако, что в регистрах числа хранятся в нормальном виде: -----------

        AX | 00 | 82 |

            -----------

              AH AL)

"Перевернутое" представление используется и при хранении в памяти целых чисел размером в двойное слово: в первом его байте размещаются младшие 8 битов числа, во втором байте - предыдущие 8 битов и т.д. На­пример, число 12345678h хранится в памяти так:

         ---------------------

| 78 | 56 | 34 | 12 |

---------------------

Другими словами, в первом слове двойного слова размещаются младшие (правые) 16 битов числа, а во втором слове - старшие 16 битов, причем в каждом из этих двух слов в свою очередь используется "перевернутое" представление.

Такое необычное представление чисел объясняется тем, что в первых моделях ПК за раз можно было считать из памяти только один байт и что все арифметические операции над многозначными числами начинаются с действий над младшими цифрами, поэтому из памяти в первую очередь надо считывать младшие цифры, если сразу нельзя считать все цифры. Учитывая это, в первых ПК и стали размещать младшие цифры числа перед старшими цифрамми, а ради преемственности такое представление чисел сохранили в последующих моделях ПК.

Конечно, "перевернутое" представление неудобно для людей, однако при использовании языка ассемблера это неудобство не чувствуется: в MASM все числа записываются в нормальном, неперевернутом виде (см. ни­же).

    Целые числа со знаком.

Эти числа также представляются в виде байта, слова и двойного сло­ва. В виде байта записываются числа от -128 до 127, в виде слова ­числа от -32768 до 32767, а в виде двойного слова - числа от -2147483648 до 2147483647. При этом числа записываются в дополнитель­ном коде: неотрицательное число записывается так же, как и беззнаковое число (т.е. в прямом коде), а отрицательное число -x (x>0) представля­ется беззнаковым числом 2^8-x (для байтов), 2^16-x (для слов) или 2^32-x (для двойных слов). Например, дополнительным кодом числа -6 яв­ляется байт FAh (=256-6), слово FFFAh или двойное слово FFFFFFFAh. При этом байт 10000000b (=80h) трактуется как -128, а не как +128 (слово 8000h понимается как -32678), поэтому левый бит дополнительного кода всегда играет роль знакового: для неотрицательных чисел он равен 0, для отрицательных - 1.

Знаковые числа размером в слово и двойное слово записываются в па­мяти в "перевернутом" виде (при этом знаковый бит оказывается в пос­леднем байте ячейки). Но в MASM эти числа, как и беззнаковые, записы­ваются в нормальной форме.

Иногда число-байт необходимо расширить до слова, т.е. нужно полу­чить такое же по величине число, но размером в слово. Существует два способа такого расширения - без знака и со знаком. В любом случае ис­ходное число-байт попадает во второй (до "переворачивания") байт сло­ва, а вот первый байт заполняется по-разному: при расширении без знака в него записываются нулевые биты (12h -> 0012h), а при расширении со знаком в первый байт записываются нули, если число-байт было неотрица­тельным, и записывается восемь двоичных единиц в противном случае (81h -> FF81h). Другими словами, при расширении со знаком в первом байте слова копируется знаковый разряд числа-байта.

Аналогично происходит расширение числа-слова до двойного слова.

Особенности выполнения арифметических опреаций

В ПК имеются команды сложения и вычитания целых чисел размером в слово и байт. Специальных команд для сложения и вычитания двойных слов нет, эти операции реализуются через команды сложения и вычитания слов.

Сложение и вычитание беззнаковаых чисел производится по модулю 2^8

для байтов и 2^16 для слов. Это означает, что если в результате сложе­ния появилась единица переноса, не вмещающаяся в разрядную сетку, то она отбрасывается. Например, при сложении байтов 128 и 130 получается число 258 = 100000010b, поэтому левая двоичная единица отбрасывается и остается число 2 = 10b, которое и объявляется результатом сложения. Ошибка здесь не фиксируется, но в флаг переноса CF записывается 1 (ес­ли переноса не было, в CF заносится 0). "Поймать" такое искажение сум­мы можно только последующим анализом флага CF.

Искажение результата происходит и при вычитание из меньшего числа большего. И здесь не фиксируется ошибка, однако первому числу дается "заем единицы" (в случае байтов это число увеличивается на 256, для

слов - на 2^16), после чего и производится вычитание. Например, вычи­тание байтов 2 и 3 сводится к вычитанию чисел 256+2=258 и 3, в резуль­тате чего получается неправильная разность 255 (а не -1).  Для того чтобы можно было обнаружить такую ситуацию, в флаг переноса CF зано­сится 1 (если заема не было, в CF записывается 0).

Сложение и вычитание знаковых целых чисел производится по тем же алгоритмам, что и для беззнаковых чисел (в этом одно из достоинств до­полнительного кода): знаковые числа рассматриваются как соответствую­щие беззнаковые числа, произодится операция над этими беззнаковыми чи­слами и полученный результат интерпретируется как знаковое число. Нап­ример, сложение байтовых чисел 1 и -2 происходит так: берутся их до­полнительные коды 1 и (256-2)=254, вычисляется сумма этих величин 1+254=255 и она трактуется как знаковое число -1 (255=256-1). Если при таком сложении возникла единица переноса, то она, как обычно, отбрасы­вается, а флаг CF получает значение 1. Однако в данном случае это от­сечение не представляет интерес - результат операции будет правильным, например: 3+(-2) => 3+254(mod 256) = 257(mod 256) = 1. Зато здесь воз­можна иная неприятность: модуль суммы (ее мантисса) может превзойти допустимую границу и "залезть" в знаковый разряд, испортив его. Напри­мер, при сложении байтовых чисел 127 и 2 получается величина 129 = = 100001001b, представляющая дополнительный код числа -127 (=256-129).

Хотя результат здесь получился и неправильным, процессор не фиксирует ошибку, но зато заносит 1 в флаг переполнения OF (если "переполнения мантиссы" не было, в OF записывается 0). Анализируя затем этот флаг, можно "поймать" такую ошибку.

Таким образом, сложение (вычитание) знаковых и беззнаковых чисел производится по одному и тому же алгоритму. При этом ПК не "знает", какие числа (со знаком или без) он складывает; в любом случае он скла­дывает их как беззнаковые числа и в любом случае формирует флаги CF и OF. А вот как интерпретировать слагаемые и сумму, на какой из этих флагов обращать внимание - это личное дело автора программы.

Что касается умножения и деления знаковых и беззнаковых чисел, то они выполняются по разным алгоритмам, разными машинными командами. Од­нако и у этих операций есть ряд особенностей. При умножении байтов (слов) первый сомножитель обязан находиться в регистре AL (AX), ре­зультатом же умножения является слово (двойное слово), которое зано­сится в регистр AX (регистры DX и AX). Тем самым при умножении сохра­няются все цифры произведения. При делении байтов (слов) первый опе­ранд (делимое) должен быть словом (двойным словом) и обязан находиться в регистре AX (регистрах DX и AX). Результатом деления являются две величины размером в байт (слово) - неполное частное (div) и остаток от деления (mod); неполное частное записывается в регистр AL (AX), а ос­таток - в регистр AH (DX).

1.2.3 Представление символов и строк

На символ отводится один байт памяти, в который записывается код символа - целое от 0 до 255. В ПК используется система кодировки ASCII (American Standard Code for Information Interchange). Она, естествен­но, не содержит кодов русских букв, поэтому в нашей стране применяется некоторый вариант этой системы с русскими буквами (обычно это альтер­нативная кодировка ГОСТа).

Некоторые особенности этих систем кодировки:

- код пробела меньше кода любой буквы, цифры и вообще любого графи-

чески представимого символа;

- коды цифр упорядочены по величине цифр и не содержат пропусков,

т.е. из неравенства код('0')<=код(c)<=код('9') следует, что c - цифра; - коды больших латинских букв упорядочены согласно алфавиту и не со-

держат пропусков; аналогично с малыми латинскими буквами;

- (в альтернативной кодировке ГОСТа) коды русских букв (как больших, так и малых) упорядочены согласно алфавиту, но между ними есть коды других символов.

Строка (последовательность символов) размещается в соседних байтах памяти (в неперевернутом виде): код первого символа строки записывает­ся в первом байте, код второго символа - во втором байте и т.п. Адре­сом строки считается адрес ее первого байта.

В ПК строкой считается также и последовательность слов (обычно это

последовательность целых чисел). Элементы таких строк располагаются в последовательных ячейках памяти, но каждый элемент представлен в "пе­ревернутом" виде.

 

    1.2.4 Представление адресов

Адрес - это порядковый номер ячейки памяти, т.е. неотрицательное целое число, поэтому в общем случае адреса представляются так же, как и беззнаковые числа. Однако в ПК есть ряд особенностей в представлении адресов.

Дело в том, что в ПК термином "адрес" обозначают разные вещи. Час­то под адресом понимается 16-битовое смещение (offset) - адрес ячейки, отсчитанный от начала сегмента (области) памяти, которому принадлежит эта ячейка. В этом случае под адрес отводится слово памяти, причем ад­рес записывается в "перевернутом" виде (как и числа-слова вообще).

В другом случае под "адресом" понимается 20-битовый абсолютный ад­рес некоторой ячейки памяти. В силу ряда причин в ПК такой адрес зада­ется не как 20-битовое число, а как пара "сегмент:смещение", где "сег­мент" (segment) - это первые 16 битов начального адреса сегмента памя­ти, которому принадлежит ячейка, а "смещение" - 16-битовый адрес этой ячейки, отсчитанный от начала данного сегмента памяти (величина 16*сегмент+смещение даетабсолютный адрес ячейки). Такая пара записы­вается в виде двойного слова, причем (как и для чисел) в "переверну­том" виде: в первом слове размещается смещение, а во втором - сегмент, причем каждое из этих слов в свою очередь представлено в "переверну­том" виде. Например, пара 1234h:5678h будет записана так:

---------------------

      | 78 | 56 | 34 | 12 |

      ---------------------

        смещение сегмент

 

    1.2.5 Директивы определения данных

Для того чтобы в программе на MASM зарезервировать ячейки памяти под константы и переменные, необходимо воспользоваться директивами оп­ределения данных - с названиями DB (описывает данные размером в байт), DW (размером в слово) и DD (размером в двойное слово). (Директивы, или команды ассемблеру, - это предложения программы, которыми ее автор со­общает какую-то информацию ассемблеру или просит что-то сделать допол­нительно, помимо перевода символьных команд на машинный язык.)

В простейшем случае в директиве DB, DW или DD описывается одна константа, которой дается имя для последующих ссылок на нее. По этой директиве ассемблер формирует машинное представление константы (в час­тности, если надо, "переворачивает" ее) и записывает в очередную ячей­ку памяти. Адрес этой ячейки становится значением имени: все вхождения имени в программу ассемблер будет заменять на этот адрес. Имена, ука­занные в директивах DB, DW и DD, называются именами переменных (в от­личие от меток - имен команд).

В MASM числа записываются в нормальном (неперевернутом) виде в cи­стемах счисления с основанием 10, 16, 8 или 2. Десятичные числа запи­сываются как обычно, за шестнадцатиричным числом ставится буква h (ес­ли число начинается с "цифры" A, B,..., F, то вначале обязателен 0), за восьмиричным числом - буква q или o, за двоичным числом - буква b.

Примеры:

A DB 162;описать константу-байт 162 и дать ей имя A

  B DB 0A2h;такая же константа, но с именем B

  С DW -1;константа-слово -1 с именем С

D DW 0FFFFh;такая же константа-слово, но с именем D

  E DD -1;-1 как двойное слово

Константы-символы описываются в директиве DB двояко: указывается либо код символа (целое от 0 до 255), либо сам символ в кавычках (оди­нарных или двойных); в последнем случае ассемблер сам заменит символ на его код. Например, следующие директивы эквивалентны (2A - код звез­дочки в ASCII):

   CH DB 02Ah

CH DB '*' CH DB "*"

Константы-адреса, как правило, задаются именами. Так, по директиве

   ADR DW CH

будет отведено слово памяти, которому дается имя ADR и в которое запи­шется адрес (смещение), соответствующий имени CH. Если такое же имя описать в директиве DD, то ассемблер автоматически добавит к смещению имени его сегмент и запишет смещение в первую половину двойного слова, а сегмент - во вторую половину.

По любой из директив DB, DW и DD можно описать переменную, т.е. отвести ячейку, не дав ей начального значения. В этом случае в правой части директивы указывается вопросительный знак:

F DW?;отвести слово и дать ему имя F, ничего в этот байт не;записывать

В одной директиве можно описать сразу несколько констант и/или пе­ременных одного и того же размера, для чего их надо перечислить через запятую. Они размещаются в соседних ячейках памяти. Пример:

  G DB 200, -5, 10h,?, 'F'

Имя, указанное в директиве, считается именующим первую из констант. Для ссылок на остальные в MASM используются выражения вида <имя>+<це­лое>; например, для доступа к байту с числом -5 надо указать выражение G+1, для доступа к байту с 10h - выражение G+2 и т.д.

Если в директиве DB перечислены только символы, например:

  S DB 'a','+','b'

тогда эту директиву можно записать короче, заключив все эти символы в одни кавычки:

  S DB 'a+b'

И, наконец, если в директиве описывается несколько одинаковых кон­стант (переменных), то можно воспользоваться конструкцией повторения

   k DUP(a,b,...,c)

которая эквивалентна повторенной k раз последовательности a,b,...,c. Например, директивы

V1 DB 0,0,0,0,0

V2 DW?,?,?,?,?,?,?,?,?,'a',1,2,1,2,1,2,1,2

можно записать более коротко таким образом:

V1 DB 5 DUP(0)

V2 DW 9 DUP(?), 'a', 4 DUP(1,2)

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...