Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Инжекционный вентиль. Принцип работы.




Базовый логический элемент (ЛЭ) в литературе называемый вентилем. Элементы интегрально-инжекционной логики выгодно отличаются простотой технологии и конструкции, так как состоят из биполярных транзисторов и не требуют особой изоляции. Следовательно, имеют высокую плотность упаковки – более 1000 вентилей на кристалл, и функциональную плотность 500-600 кристаллов на мм2 .

Изобретение в 1972 г. элементов интегральной инжекционной логики (И2Л) явилось результатом работ по совершенствованию БИС на биполярных транзисторах. Для построения микросхем И2Л используется базовая структура, показанная на рис. 18,а. Области p1-n1-p2 образуют горизонтальный транзистор

p-n-p-типа, а области n2-p2-n1 – вертикальный транзистор n-p-n-типа.

Горизонтальный транзистор VT1 выполняет функции инжектора дырок из

эмиттерной области p1 в область n1, служащую одновременно базой этого

транзистора и эмиттером вертикального транзистора VT2. Инжектированные в область n1 дырки собираются расположенными вокруг эмиттерной области p1 областями p2, являющимися одновременно коллекторами горизонтального и базами вертикальных транзисторов. Вертикальные транзисторы имеют по несколько коллекторов, образуемых областями n2. Подложка n1+, являясь конструктивной основой ИМС, объединяет эмиттеры всех вертикальных транзисторов. При этом отпадает необходимость в изоляции отдельных элементов друг от друга, что приводит к существенному уменьшению площади, занимаемой элементом, и повышению коэффициента интеграции.

Рисунок 18

 

Питание инжектора осуществляется от источника напряжения Еип через

токозадающий резистор R И, который не входит в эквивалентную схему ЛЭ и

является общим для всего кристалла БИС. Возможно также питание от

внешнего источника тока или путем облучения поверхности кристалла.

Транзистор VT1 типа p-n-p называют токозадающим: он задает ток базы

переключательного транзистора VT2 и токи баз других переключательных

транзисторов, имеющих общую инжекторную область. В общем случае

токозадающий транзистор VT1 является многоколлекторным, количество

которых может доходить до нескольких сотен. Если ключевой транзистор

предыдущего элемента (VT0) насыщен, то напряжение на эмиттерном переходе транзистора VT2 (UБЭ2) снижается примерно до 50 мВ и коллекторный ток IК транзистора VT1 течет через насыщенный транзистор VT0. При этом транзистор VT2 оказывается закрытым и на его коллекторах устанавливаются напряжения высокого уровня. Если ключевой транзистор VT0 заперт, то напряжение на его коллекторе возрастает до уровня, ограниченного напряжением отпирания эмиттерного перехода ключевого транзистора VT2. Этот уровень у транзисторов И2Л составляет 0,6…0,75 В. Ток IК транзистора VT1 потечет в базу транзистора VT2, вводя его в режим насыщения. На коллекторах транзистора VT2, подключенных ко входам аналогичного элемента, образуются напряжения низкого уровня порядка 50 мВ. Таким образом, рассмотренный базовый ЛЭ И2Л реализует операцию НЕ с уровнями напряжений в ПЛ U1=0,6…0,75 В, U0=0,05 В и логическим перепадом UЛ=0,55…0,65 В. Число выходов такого элемента равно числу коллекторов переключательного транзистора. Условное графическое обозначение инвертора с двумя выходами показано на рис. 18,в.

При анализе схем на элементах И2Л транзистор VT1 (см. рис. 18,б) обычно

заменяют генератором тока в базовых цепях ключевых транзисторов VT2. Для получения необходимых логических функций применяют объединение

коллекторов ключевых транзисторов. На рис. 19,а показана реализация

функции ИЛИ-НЕ на двух базовых элементах. Штриховыми линиями показаны ключевые транзисторы предыдущих элементов. Если хотя бы один из сигналов (например, х 1) равен 1, то есть заперт транзистор VT0, то ключевой транзистор VT1 насыщен и y = 0 независимо от состояния VT2. И только в случае, когда х 1= х 2 = 0 токи генераторов тока будут протекать через насыщенные транзисторы VT0 и VT0’’, ключевые транзисторы VT1 и VT2 будут заперты и на выходе образуется сигнал y = 1.

Параллельное соединение выходов нескольких инверторов позволяет

получить элемент ИЛИ-НЕ в ПЛ либо элемент И-НЕ в ОЛ. При этом не

происходит нарушения нормального электрического режима. Параллельное

соединение баз транзисторов не разрешается с целью исключения

неравномерного распределения токов между несколькими переключательными транзисторами. Элементы И2Л могут работать с очень малыми токами, причем быстродействие элементов растет с увеличением силы потребляемого тока. Эта особенность позволяет получать требуемое быстродействие без разработки каких-либо модификаций элементов И2Л, поскольку нужное быстродействие можно получить с помощью изменения режима работы.

19 рисунок

Из-за отсутствия резисторов и наличия общих для обоих транзисторов областей p и n схемы элементов И2Л в 1,5…2 раза технологичнее схем элементов ТТЛ и занимают меньшую площадь на кристалле. Плотность элементов И2Л может в 50 раз превышать плотность элементов ТТЛ. Низкое напряжение питания (порядка 1,5 В), малые логические перепады и малые паразитные емкости (обусловленные малыми размерами элементов) позволили уменьшить энергию переключения до долей пикоджоуля (у стандартного элемента ТТЛ А=100 пДж).Малые уровни сигналов и существенно отличающиеся по значениям выходные сопротивления для состояний логического 0 и 1 делают неперспективным применение элементов И2Л в схемах малой и средней степени интеграции, т.к. при этом очень трудно обеспечить надежную передачу сигналов по внешним линиям связи без использования специальных буферных элементов. Поэтому элементы И2Л ориентированы на реализацию только в БИС

или СБИС.

 

38. Зависимость коэффициента биполярного транзистора от коллекторного тока.

39.Технология изготовления и основные параметры полевого транзистора.

* Параметры МДП - транзисторов аналогичны H параметрам полевых транзисторов с р-n- переходом, но для МДП транзисторов чаще используются У параметры.

 

40.Высоколомехоустойчивая логика. Принцип работы.

41.ТТЛ (ТТЛШ) - вентиль. Принцип работы.

42.0собснности обратной характеристики р-n перехода.

43.Принцип работы транзистора в инверсном режиме и его конструкция.

Режим работы транзистора, при котором коллекторный переход смещен в прямом направлении, а эмиттерный – в обратном, называется инверсным. В этом случае коллектор играет роль эмиттера, а эмиттер – коллектора. Конструктивно у транзистора между коллекторным и эмиттерный переходами нет принципиальных различий. Поэтому транзистор (в отличие от электронной лампы) допускает инверсное включение. При этом в случае структуры р-n-р дырки инжектируются в базу коллектором транзистора, а собираются (экстрагируются) его эмиттером.

Эта особенность позволяет значительно упростить ряд устройств, в которых в процессе работы производится последовательная смена направления передачи сигналов (меняются местами вход и выход каскада). Кроме того, ряд специфических параметров транзистора при инверсном включении улучшаются, например уменьшаются (по модулю) остаточное напряжение и ток в режиме отсечки, что очень важно при использовании транзистора в качестве электронного ключа.

 

Прежде всего, следует отметить уменьшение коэффициента передачи тока эмиттера, что в бездрейфовом транзисторе происходит в основном из-за разности площадей эмиттерного и коллекторного переходов. В дрейфовом транзисторе это уменьшение происходит также из-за влияния собственного поля базы, которое при нормальном включении способствует прохождению (создаёт дрейф) инжектированных носителей через базу, а при инверсном включении соответственно оказывает на них тормозящее действие.

 

Рассмотрим процесс переноса дырок через базу бездрейфового планарного транзистора типа p-n-p при нормальном и инверсном включении (см. рисунок). Базу транзистора следует разделить на активную и пассивную области. Активная область базы определяется площадью эмиттерного перехода. При нормальном включении транзистора подавляющее большинство дырок, инжектируемых эмиттером, переходит на коллектор по кратчайшему пути через активную область базы. Здесь появляется наибольший градиент в распределении концентрации дырок, наибольшая скорость и соответственно наименьшее время их переноса. Незначительное количество дырок, диффундируя в направлении уменьшения своей концентрации, достигает коллектора по более длинному пути через пассивную область базы. Именно здесь происходит усиленная объёмная и поверхностная рекомбинация дырок, являющаяся основной причиной уменьшения управляемого тока коллектора при неизменном токе эмиттера.

При инверсном включении большое количество инжектируемых инверсным эмиттером дырок совершает переход к инверсному коллектору по относительно длинному пути через пассивную область базы. Причем многие из них попадают на поверхность кристалла возле контактного кольца базы. Поэтому в инверсном режиме становится более заметным влияние как объёмной, так и поверхностной рекомбинации дырок, что и вызывает уменьшение инверсного коэффициента передачи тока.

Все статические характеристики транзистора в инверсном режиме подобны соответствующим характеристикам при его нормальном включении.

Для такого включения транзистора характерно βинв≈1. На рис. показан примерный вид выходных ВАХ транзистора с ОЭ в прямом (первый квадрант) и обратном включениях (третий квадрант), откуда видно, что при инверсном включении обычный транзистор имеет меньший коэффициент передачи тока базы как в статическом, так и в динамическом режимах

44.Классификация полупроводниковых диодов.

45.Технологический процесс изготовления биполярного транзистора с диодом Шоттки.

Модель Эберса - Молла.

Для анализа работы транзистора в схемах Дж.Д.Эберс и Дж.Л.Молл в 1954 г. предложили простые и удобные модели транзистора, различные варианты которой широко используются на практике. В эти модели входят управляемые источники тока, управляемые токами, учитывающие связь между взаимодействующими p - n -переходами в биполярном транзисторе. Эти модели справедливы для всех режимов работы транзистора.

В основе модели Эберса—Молла лежит идея разложения токов через эмиттерный и коллекторный переходы на инжектируемую и собираемую составляющие:

Здесь 1{(Vbe) и 12(Vbc) — инжектируемые составляющие токов эмиттера и коллектора, соответственно.

Простейшим вариантом низкочастотной модели Эберса-Молла является модель с идеальными p - n -переходами и двумя источниками тока. На рис. 3.11 представлена такая модель.

Простейшим вариантом низкочастотной модели Эберса-Молла является модель с идеальными p - n -переходами и двумя источниками тока. На рис. 3.11 представлена такая модель.

рисунок 3.11

Здесь aст,и - коэффициент передачи коллекторного тока в инверсном режиме; iэ, iк - токи, текущие через переходы, они определяются соотношениями:

Iэ,s, Ik,s- обратные тепловые токи коллектора и эмиттера соответственно.

В некоторых источниках и справочниках используются обозначения для обратных тепловых токов в виде IЭБК и IКБК, причем эти тепловые токи измеряются при короткозамкнутых коллекторе для IЭБК и эмиттере для IКБК. Кроме того, в аналитических соотношениях иногда используются обозначения IЭ0 и IК0, равные

отражающие обратные токи эмиттера и коллектора при обрыве коллектора или эмиттера соответственно.

В соответствии с первым законом Кирхгофа для токов эмиттера и коллектора схемы рис.3.11 имеем

 

 

47.Классификация интегральных микросхем и дискретных приборов.

52. Классификация интегральных микросхем и дискретных приборов

Интегральные микросхемы (ИМС) подразделяются:

- по виду обрабатываемого сигнала на аналоговые (непрерывный во времени сигнал) и цифровые (дискретный сигнал),

- по способу изготовления и структуре на гибридные, пленочные и полупроводниковые,

- по степени интеграции на малые (10 элементов на кристалл), средние (100 элементов), большие(1000) и сверхбольшие (>10000),

- по быстродействию и т.д.

Маркировка ИМС по ГОСТ 18682-73 позволяет определить по ее названию ряд параметров. Первая цифра: 1,5,7 означает, что это полупроводниковые ИМС, если 2,4,6,8 - гибридные ИМС, 3 - прочие. Вторая и третья цифры определяет номер разработки. Далее следуют две буквы, которые связаны с функциональным назначением ИМС, а последняя цифра - это номер в данной серии. Например, К155ТМ3 - полупроводниковая ИМС, 55 серия, D-триггер; К140УД8 - операционный усилитель из 40 серии (буква К у полупроводникового прибора говорит о материале подложки, в данном случае - кремний, например КТ315 - кремниевый транзистор).

Полупроводниковые ИМС подразделяются на биполярные и с МОП структурой (т.е. Металл-Оксид-Полупроводник), причем первые - более быстродействующие, а вторые имеют большую степень интеграции и меньшую потребляемую мощность. Среди аналоговых ИМС наибольшей популярностью пользуются операционные усилители (ОУ), на базе которых легко построить большое количество электронных схем, таких как усилители, интеграторы, логарифматоры, генераторы и т.д. Цифровые ИМС находят очень широкое применение не только в компьютерных системах, но и в системах связи, а также в бытовой технике.
Цифровые микросхемы могут по идеологии, конструкторскому решению, технологии относится к разным семействам, но выполнять одинаковую функцию, т.е. инвертором, триггером или процессором. Наиболее популярными семействами можно назвать у биполярных ИМС: ТТЛ (транзисторно-транзисторная логика), ТТЛШ (с диодами Шоттки), ЭСЛ (эмиттерно-связанная логика), у МОП: n-МОП и КМОП. Цифровые микросхемы оперируют с дискретным сигналом (например, есть сигнал - логическая единица "1", нет сигнала - логический нуль "0") и могут быть описаны в терминах булевской алгебры. Некоторые простые устройства на основе цифровых ИМС будут описаны ниже.

 

Дискретным автоматом называют модель дискретного устройства, отражающую только его свойства по переработке сигналов. В таком автомате выделяются множества состояний входов а={ x1,x2,…xn} и выходов v={z1,z2,…zq}, а также внутренних состояний S={s1,s2,…sr}.
Сигналы при этом двузначные, а элементы памяти двоичные, т.е. каждый с двумя внутренними состояниями.
В зависимости от вида функций выходов, представляющих собой зависимость значений сигналов на каждом выходе от состояния входов а и внутренних состояний элементов памяти s в данный момент времени, дискретные автоматы делят на два класса: комбинационные автоматы и автоматы с памятью.
В комбинационном автомате, называемом так же автоматом без памяти, или комбинационным устройством, каждый сигнал на выходе (логические 0 или 1) определяется лишь сигналами (логические 0 или 1), действующими в данный момент времени на входах автомата, и не зависит от сигналов, ранее действовавших на этих входах. Комбинационный автомат не имеет памяти, он не хранит информации о своей прошлой работе.
Функция выходов для комбинационного автомата
Zj(t)=fj(a(t)), где Zj(t) - сигналы на j-м выходе автомата в момент времени t. A(t) - значение сигналов на всех входах автомата (множество состояний входов). В автоматах с памятью, называемых также последовательностными устройствами, выходной сигнал определяется не только значениями сигналов на входах в данный момент времени, но и его внутренним состоянием. Внутреннее состояние автомата зависит от состояний его элементов памяти. Дискретные устройства с памятью, имеющие конечное число состояний, называют конечными автоматами. Функционирование автомата, т.е. состояния его входа, выхода и памяти, рассматривается в дискретные моменты времени. T0, t1, t2…, интервалы, между которыми называются тактами.
Устройства ЭЛС исполняются как на электромагнитных реле, так и на бесконтактных элементах.

 

48.Полупроводниковые приборы с использованием перехода металл-полупроводник.

49.Структура интегрального конденсатора.

50.График «жизненного» цикла изделий.

51.Принцип работы и конструкция инжекционного вентиля.

52.Эквивалентная схема интегрального резистора.

53.Система параметров светоизлучающего диода.

54.Работа биполярного транзистора в ключевом режиме.

55.Вольтамперная характеристика р-n перехода и диода Шоттки.

56.Способы включения биполярного транзистора.

57.Расчет параметров интегрального резистора.

58.Система электрических параметров логических схем.

59.Технологический процесс изготовления полевого транзистора.

Полупроводниковые элементы на полевых транзисторах (рис. 2.1.12, 2.1.13) не требуют электрической изоляции и в этой связи технологический процесс содержит меньшее число операций.

В качестве примера ниже приведен технологический процесс ИМС, выполняемых на базе МДП- транзисторов n–p–n- типа с индуцированным каналом (рис. 2.1.12, а).

Последовательность выполнения операций и связанные с этим структурные изменения в поперечных разрезах подложки показаны на рис. 2.2.2. Используется подложка кремния p -типа диаметром от 60 до 250 мм. После очистки и последующего окисления выполняется фотолитография (первое маскирование) с травлением, открывающим всю площадь будущего элемента.

Далее осуществляется второе окисление до толщины 0,1…0,3 мкм в площади элемента. На созданном оксиде производится вторая литография, в процессе которой над затвором оксид сохраняется, площадь над будущими


областями стока и истока от оксида освобождается.

После соответствующей подготовки производится диффузия бора, создаются тем самым области стока–истока. Температура процесса 1000…1100 °С, в качестве источника бора может использоваться диборан В2Н6 или

галогениды бора BCl3 и BBr3. В случае использования галогенидов ведут окислительную диффузию для устранения эрозии поверхности. При этом в газовую смесь добавляют кислород и на поверхности кремния

образуется слой SiO2B2O3. Из этого слоя и производится загонка примеси, что позволяет более точно регулировать необходимый профиль концентрации носителей на заданной глубине.

Третья фотолитография проводится для вскрытия окон в диэлектрике над областью затвора с целью последующего прецизионного окисления для создания диэлектрического оксидного слоя толщиной порядка

0,02 мкм.

В дальнейшем выполняется четвертая литография для вскрытия окон под омические контакты стока–истока, производится напыление слоя алюминия по всей площади и последующая пятая литография с целью получения

топологии межэлементных соединений и контактных площадок.

Основные обрабатывающие процессы заканчиваются напылением или осаждением защитного слоя

(пассивация).

60.Система статических и динамических параметров интегральных схем.

61.Зависимость параметров биполярного транзистора от температуры.

62.Первый и второй закон Мура.

63.Зависимость параметров полевого транзистора от температуры.

64.Способы включения полевого транзистора.

65.Структура интегрального конденсатора, изготовленного по биполярному технологическому процессу и его параметры.

66.Структура интегрального конденсатора, изготовленного в МОП - техпроцессе и его параметры.

67.Основные параметры МОП - транзисторов.

68.Конструкция интегральных биполярных транзисторов в диодном включении.

69.Классификация МОП - транзисторов.

70. Понятие «жизненного» цикла полупроводниковых изделий.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...