Откройте дверь. Задача с двумя мальчиками
Откройте дверь
В 60‑ е годы на американском телевидении пользовалось популярностью игровое шоу «Давайте поспорим», которое вел Монти Холл. Его формат был построен на задачах из области теории вероятности, которые ярко демонстрировали, насколько тяжело людям с ними справляться. Представьте себе, что вы участвуете в финальной игре «Давайте поспорим». Ведущий подводит вас к трем дверям. За двумя из них стоят козы (только не спрашивайте меня, почему именно они), а за третьей — автомобиль. Вы хотите выиграть автомобиль, но не знаете, за какой дверью он находится. Ведущий просит вас выбрать одну дверь, но пока не открывать ее. У вас есть один шанс из трех, что вы выбрали автомобиль, и два шанса из трех, что козу. После этого ведущий открывает одну из двух других дверей и показывает вам, что там коза. А теперь он предоставляет вам право выбора. Вы можете остаться при своем прежнем решении или открыть другую оставшуюся дверь. Как вы поступите? Меняются ли при этом ваши шансы на выигрыш? Что в данном случае лучше: сохранить верность первоначальному решению или поменять его? Мы понимаем, что после того, как открыта одна из дверей, и мы убедились, что за ней стоит коза, у нас остаются всего две двери. За одной из них находится автомобиль, а за другой — коза. Представляется совершенно очевидным, что шансы составляют 50: 50, какую бы дверь вы ни выбрали. И это ошибка. На самом деле шансы возрастают вдвое, если вы откажетесь от первоначального решения и выберете другую дверь. Если этот вывод кажется вам абсурдным, то вы отнюдь не одиноки. В свое время писательница Мэрилин вос Савант вела в журнале «Parade» рубрику, где отвечала на вопросы читателей. В 1990 году ей был задан этот вопрос, и она дала приведенный выше ответ: лучше поменять решение. После этого читатели засыпали ее тысячами откликов, в которых убеждали ее в том, что она не права и что шансы равны. Некоторые письма подобного рода приходили даже от математиков и других ученых.
Если вы построите компьютерную модель этого задания и попробуете проделать опыт сами, то убедитесь, что действительно лучше поменять решение. Но ведь это полностью противоречит логике! Однако, решая эту задачу, необходимо учитывать один очень важный момент: ведущий открывает дверь не случайно. Он точно знает, что за ней стоит коза. А теперь вернитесь к тому моменту, когда вы принимали первое решение. Ваш шанс выиграть автомобиль составляет 1: 3. Другими словами, вероятность того, что автомобиль стоит за одной из двух других дверей, равна 2: 3. После того как ведущий открывает одну из дверей, эта вероятность 2: 3 по‑ прежнему сохраняется, только теперь она распространяется всего на одну оставшуюся дверь. Если же вы захотите открыть первоначально выбранную дверь, то ваш шанс, как и прежде, будет 1: 3. Поэтому лучше выбрать третью дверь.
Задача с двумя мальчиками
Как ни странно, схожая ситуация, вызвавшая непонимание и даже возмущение читателей, возникла и с другим вопросом в рубрике вос Савант. Задача очень проста: «У меня двое детей, и один из них мальчик, родившийся во вторник. Какова вероятность, что у меня два мальчика? » Однако для того, чтобы решить эту задачу, давайте сначала сделаем шаг назад и упростим ее: «У меня двое детей, и один из них мальчик. Какова вероятность, что у меня два мальчика? » Первым делом в голову приходит мысль: «Один из детей — мальчик. Следовательно, второй может быть либо мальчиком, либо девочкой. Таким образом, шансы составляют 50: 50. Вероятность того, что в семье два мальчика, равна 50 процентам».
К сожалению, ответ неверен. Чтобы это понять, надо составить простую схему. В левую часть мы поместим старшего ребенка. Это может быть либо мальчик, либо девочка. Вероятность 50: 50. В правой части у нас окажется младший ребенок. Для каждой из указанных выше возможностей это опять‑ таки будет мальчик или девочка. Вероятность каждой из четырех возможных комбинаций составляет 25 процентов. Все комбинации, за исключением «девочка — девочка», соответствуют условию задачи: «У меня двое детей, и один из них мальчик». Итак, у нас осталось три одинаково вероятные возможности, в каждой из которых один ребенок — мальчик. Вероятность того, что оба ребенка мальчики — это всего лишь один вариант из трех, то есть шансы составляют 1: 3.
Потенциальные комбинации детей
Если вас это удивляет, то вспомните условие задачи: «Один из них мальчик». Здесь ничего не говорится о том, старший он или младший. Вот если бы мы сказали что «старший из них мальчик», тогда здравый смысл совпал бы с теорией вероятности. Если старший ребенок мальчик, то остаются только два варианта с равной вероятностью: второй ребенок может быть либо мальчиком, либо девочкой, следовательно, вероятность равна 50: 50. Теперь вы уже готовы решить полную версию задачи: «У меня двое детей, и один из них мальчик, родившийся во вторник. Какова вероятность, что у меня два мальчика? » Внутренний голос подсказывает вам: «Дополнительная информация о дне недели не имеет никакого значения. Решение остается прежним: шансы на то, что в семье два мальчика, составляют один к трем». Однако, как ни удивительно, вероятность в данном случае составляет 13: 27, то есть довольно близка к 50: 50. Для пояснений надо было бы нарисовать еще одну схему, но мне не хочется себя утруждать, поэтому вам придется ее представить. В левую часть схемы поместим 14 детей: первый мальчик, родившийся в воскресенье, первый мальчик, родившийся в понедельник, первый мальчик, родившийся во вторник… первая девочка, родившаяся в воскресенье и такдалее вплоть до первой девочки, родившейся в субботу. У каждого из этих детей будет по 14 вариантов младших братьев или сестер: второй мальчик, родившийся в воскресенье, и т. д.
Итак, у нас есть 196 комбинаций, но, к счастью, большую часть из них мы можем сразу вычеркнуть. Нас интересуют только комбинации, в которых присутствует мальчик, родившийся во вторник. Таким образом, у нас остается пункт в левой части «первый мальчик, родившийся во вторник», с четырнадцатью возможными вариантами, а также еще 13 вариантов, в которых присутствует второй мальчик, родившийся во вторник. Итого 27 комбинаций. В скольких из них присутствуют два мальчика? В половине из первых четырнадцати вариантов и в шести из оставшихся тринадцати. Итого 13 (7 + 6). Тринадцать комбинаций дают нам двух мальчиков. Таким образом, вероятность того, что в семье два мальчика, составляет 13 к 27. Здравый смысл протестует. Выходит, что, назвав день недели, в который родился один из мальчиков, мы увеличиваем вероятность рождения второго мальчика. Но ведь с тем же успехом мы могли бы назвать любой день недели. Почему так получается? Потому что, введя в качестве дополнительной информации день рождения, мы сразу отсекаем массу возможностей. Добавление любой информации фактически равносильно тому, что мы приходим к ситуации, в которой мальчиком является старший ребенок. Теория вероятности абсолютно верна, и вы, если хотите, можете это доказать, смоделировав ситуацию на компьютере. Все цифры сойдутся. Но ум отказывается в это верить. Как вам это нравится? (Вообще‑ то, истины ради, стоило бы добавить, что представленная картина не совсем соответствует реальности. Решая задачу, мы исходили из того, что обычно мальчиков и девочек рождается поровну и что их появление на свет равномерно распределяется по всем дням недели. На самом деле это не совсем так, но данные обстоятельства уже выходят за рамки предлагаемого упражнения. )
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|