Иконоскоп – электронный глаз. Луч «читает» изображение
Иконоскоп – электронный глаз
Б. Л. Розингу – основоположнику электронного дальновидения еще при жизни удалось видеть осуществление его идеи. Два советских изобретателя– инженеры Константинов из Ленинградского электрофизического института (в 1930 году) и Катаев из Всесоюзного электротехнического института (в 1931 году) изобрели «зрячую» электроннолучевую трубку, получившую название – иконоскоп, что означает «изображение смотрящий». Глаз может служить моделью фотоаппарата. У глаз – веки, у фотоаппарата – затвор. Диафрагма – радужная оболочка. Линзе объектива условно соответствует хрусталик, а светочувствительной пленке – сетчатка (рис. 104). Рис. 104. Глаз послужил моделью и для фотоаппарата и для видящих приборов телевидения.
В фотоаппарате светочувствительная пленка состоит из множества отдельных мельчайших частичек бромистого серебра. Под действием света бромистое серебро разлагается, и изображение запечатлевается на пластинке. И глаз и фотоаппарат послужили образцами для создания основного прибора современного телевидения «иконоскопа». Иконоскоп тоже имеет «веки» – затвор, «зрачок» – диафрагму и набор линз, составляющих объектив прибора. Напротив объектива на задней стенке иконоскопа расположена «сетчатка» – светочувствительный электрод, называемый фотокатодом. Он имеет зернистую, мозаичную поверхность, то есть состоит из множества отдельных чувствительных к свету элементиков. Фотокатод изготовляют из тонкой слюдяной пластинки, на которую наносят несколько миллионов мельчайших капелек серебра. Капельки серебра прилипают к слюде, покрывая ее крошечными точками. Серебряные крупинки, обработанные цезием, становятся маленькими, но совершенно самостоятельными фотоэлементиками.
Каждый такой фотоэлементик держится особняком: серебряно‑ цезиевые точки сидят на слюде изолированно, как островки. Тыльную сторону слюдяной пластинки покрывают сплошным слоем какого‑ либо металла – алюминия, серебра, меди, и этот сплошной металлический слой через сопротивление соединяют с землей. Таким образом, каждый серебряно‑ цезиевый фотоэлементик одновременно является и конденсатором. Одной обкладкой этого микроскопического конденсатора служит серебряно‑ цезиевая крупинка, другой – слой металла, а диэлектриком – слюда. К металлической обкладке припаян проводник, передающий сигналы изображения с фотокатода к другим приборам телевизионной станции – к усилителям и передатчику. Объектив отбрасывает изображение передаваемого предмета на фотокатод. Каждый фотоэлементик получает определенную порцию света. Фотоэлементы, оказавшиеся в темных, теневых местах изображения, получают света меньше, оказавшиеся в светлых местах – больше. Свет выбивает электроны из атомов серебряно‑ цезиевых крупинок. В местах, где света падает больше, электронов будет выбито много; в затемненных местах, где освещенность слабее, – поменьше, а в совсем черных, густых тенях, куда свет не падает, электроны вовсе не будут выбиты. В результате воздействия светового потока, принесшего изображение, каждый из нескольких миллионов самостоятельных фотоэлементов, составляющих фотокатод, потеряет определенное количество электронов. Иначе говоря, каждая серебряно‑ цезиевая крупинка приобретет какой‑ то положительный заряд. Величина этого положительного заряда на каждом отдельном фотоэлементе будет в точности соответствовать количеству упавшего на него света. На фотокатоде получится невидимое изображение, нарисованное мельчайшими положительными электрическими зарядами, причем темным местам соответствуют маленькие заряды, а светлым – более крупные.
Но каждый фотоэлемент одновременно и конденсатор. Когда на одной обкладке конденсатора возникают электрические заряды, то на другой обкладке накапливаются заряды точно такие же по величине, но противоположные по знаку. Фотоэлементы, потеряв электроны, приобрели положительные заряды. Следовательно, за слюдяной перегородкой в слое металла возникнут равновеликие отрицательные заряды. Теперь на сцену выступает главное действующе лицо иконоскопа – электронный луч.
Луч «читает» изображение
Электронная пушка посылает на фотокатод тонкий электронный луч, а управляющие пластины (или заменяющие их катушки) передвигают его по фотокатоду точно так же, как наш взгляд пробегает по строчкам, когда мы читаем страницу книги. Мы начинаем читать ее с верхней строчки, с левого края. Буква за буквой, слово за словом – взгляд доходит до конца строки и тотчас перескакивает на вторую строчку. Прочитав вторую строку до конца, он переходит на третью, с третьей на четвертую и так, строка за строкой, прочитывается вся страница. При этом скорость чтения обычного текста составляет примерно 750 знаков в минуту (при чтении вслух) и 1500–2000 знаков при чтении про себя. Электронный луч пробегает сначала вдоль верхней кромки фотокатода – по верхнему ряду фотоэлементов, затем луч перескакивает чуть ниже и пробегает слева направо вторую строчку. За второй строчкой он «прочитывает» третью, за третьей – четвертую и, таким образом, пробегает по всем строчкам фотокатода, «осматривая» все изображение, точку за точкой. Иконоскопы, в которых луч прочеркивает на фотокатоде 625 строк за одну двадцать пятую долю секунды, дают очень высокое качество изображения и применяются только в СССР. В США лучшие телевизионные центры пользуются 525‑ строчной разверткой. Английские телевизионные станции применяют иконоскопы с разверткой на 405 строк. Электронный луч – не что иное, как поток электронов. Следовательно, в тот момент, когда электронный луч падает на какой‑ либо фотоэлемент, убыль электронов, выбитых светом из этого фотоэлемента, мгновенно пополняется. Положительные заряды под действием электронного луча нейтрализуются. Электронный луч не «читает» изображение, он стирает, уничтожает его, как тряпка стирает мел с классной доски (рис. 105).
Рис. 105. Электронный луч, нейтрализуя положительный заряд фотоэлемента в мозаичном электроде, тем самым освобождает в металлической пластинке равновеликий отрицательный заряд, который стекает на сетку усилительной лампы.
В тот миг, когда электронный луч касается самого первого фотоэлемента в верхнем ряду и нейтрализует его положительный заряд, тотчас стайка электронов в металлической пластинке, которая была связана этим положительным зарядом, получает свободу. Она бросается к выходу из металлической пластинки. В проводнике возникает мгновенный ток – импульс, толчок. А сила этого импульса соответствует величине положительного заряда, нейтрализованного электронным лучом, и вместе с тем яркости изображений в самой левой верхней точке фотокатода. Пробегая по всем фотоэлементам фотокатода и «стирая» один за другим положительные заряды на этих фотоэлементах, электронный луч освобождает соответствующие им по величине стайки электронов в металлической пластинке. Эти стайки по очереди устремляются в проводник, создавая в нем цепочку мгновенных импульсов электрического тока. Стайки с большим числом электронов дают сильные импульсы. Если в стайке мало электронов – импульс слаб. И что же получается? Электронный луч «стирает» с мозаичной поверхности фотокатода изображение, «нарисованное» положительными зарядами, и тем самым создает в проводнике цепочку сигналов – отрывистых импульсов электрического тока различной силы. Эти импульсы отводятся к усилителю, который обращает их в более мощные электрические сигналы. Изображение разлагается на ряд импульсов, следующих друг за другом, и «бежит» по проводам, как телеграфные знаки азбуки Морзе, Электронный луч в иконоскопе разрезает изображение на 625 строк‑ ленточек, превращает его в своеобразную телеграмму. Ее можно послать и по проводам и без проводов – по радио (рис. 106).
Рис. 106. Схема иконоскопа.
Электронный луч пробегает по всем точкам поверхности фотокатода за 1/25 долю секунды. Он делает ежесекундно по 25 кадров‑ снимков, почти не отличаясь в этом отношении от киносъемочного аппарата, который фотографирует на пленку 24 кадра в секунду. Такая частота обеспечивает передачу движущихся изображений, не уступающих по качеству кинофильму. Так как электронный луч в советских телевизорах прочеркивает на фотокатоде 625 строк, а каждая строка содержит примерно по 832 элементика развертки, то, очевидно, общее число элементов в кадре составит 625 х 832 = 520 000, а полное число элементов в 25 кадрах, передаваемых за секунду, составляет 25 х 625 х 832 = 13 000 000 в секунду! Уже из этого видно, какое огромное преимущество имеет электронная система телевидения перед механической, передававшей обычно только 100 х 100 х 10 = 100 000 элементов в секунду. Объектив иконоскопа во время работы ни на один миг не закрывается. Он «смотрит, не мигая». Свет падает на фотокатод не отрывистыми порциями, как через дырочки в диске Нипкова, а сплошным потоком. Фотоэлементы находятся под непрерывным воздействием световых лучей и непрерывно накапливают заряды. Электронный луч посещает каждый фотоэлемент через 1/25 долю секунды, а «гостит» у него всего лишь 1/13000000 долю секунды. За столь короткий промежуток времени он забирает у фотоэлемента весь накопленный им заряд. Фотоэлемент в иконоскопе для накапливания зарядов имеет больше времени, чем для их высвобождения. И ясно, что видеосигналы, то есть сигналы, несущие изображения, в иконоскопе получаются много сильнее, чем в механических телевизорах, где фотоэлементы совсем не имеют времени для накапливания зарядов. Несмотря на такое преимущество иконоскоп все же немного «подслеповат» и при обычном дневном освещении «видит» плохо. В студиях телевизионных станций поэтому приходится применять мощные «юпитеры» и «кинопрожекторы», заливающие сцену потоками яркого света. В 1933 году два советских ученых, П. В. Шмаков и П. В. Тимофеев, изобрели новый, значительно более совершенный тип «видящего» прибора, названный ими «суперэмиттрон». Дальнейшие усовершенствования еще более повысили чувствительность передающей трубки. Если раньше передачу можно было вести только из специальных студий, где артисты страдали от жары, создаваемой множеством прожекторов, то сейчас можно передавать театральные постановки, футбольные матчи, различные моменты производственной работы из заводских цехов. Везде, где светло для человека, достаточно светло и для телевизионного передатчика. Трудами советских ученых и изобретателей создан подлинный электронный глаз!
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|