Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Тунельный контакт и эффект Джозефсона

 

Если два куска металла разделены слоем изолятора толщиной ~ 107 см, то благодаря туннельному эффекту электроны переходят из одного металла в другой и между ними устанавливается равновесие (уравниваются их химические потенциалы). Если оба металла находятся в нормальном состоянии, то при приложении к ним разности потенциалов  потечёт электрический ток , где - сопротивление контакта. Если же один из металлов находится в сверхпроводящем состоянии и Т=0, то ток возникает лишь начиная с величины .

В последнем случае равновесие электронов имеет своеобразный характер: куперовские пары со стороны сверхпроводника и 2 «свободных электрона» со стороны нормального металла. В принципе приложение даже малой разности потенциалов сразу же вызовет ток куперовских пар, но сопротивление этому току будет очень большим, т.к. туннельное прохождение через барьер частицы с удвоенным зарядом очень маловероятно. Т.о., для того, чтобы куперовская пара могла перейти в нормальный металл, она должна разорваться. С другой стороны, если электрон переходит из нормального металла в сверхпроводник, то ему не с чем связаться в пару, т.е. он должен обладать энергией, на велечину Δ большую энергии электрона, входящего в состав пары. Т.о., для Т=0 при  ток , при  - , где - сопротивление в нормальном состоянии. Отсюда по порогу для тока непосредственно определяется Δ.

Если туннельный контакт состоит из 2 сверхпроводников, то возможны 2 явления, которые вместе называются эффектом Джозефсона.

В 1962 г. Б. Джозефсон на основе теории сверхпроводимости предсказал существование этих явлений, а в 1963 г. подтвердил экспериментально. Различают стационарный и нестационарный эффекты Джозефсона. Первый из них состоит в возможности протекания постоянного тока через туннельный контакт, образованный двумя сверхпроводниками, разделенными тонким слоем (~10-9м) диэлектрика. Ток протекает через барьер, характеризующийся нулевой разностью потенциалов.

Исходя из кванто-механического выражения для плотности тока:

 

 (73)

 

и учитывая, что ψ - это комплексная величина:

 

 (74)

 

легко находим, что j~Ñy. В реальных металлах, в отсутствие внешнего поля, макроскопический ток не наблюдается, так как фазы у электронов случайны и плотность тока обращается в нуль.

Сверхпроводники характеризуются фазовой когерентностью. При этом все электронные пары в данном сверхпроводнике имеют одинаковую фазу и ток отсутствует (Dj=0). Если образовать туннельный контакт из двух различных сверхпроводников, то через такой контакт ток потечет без приложения напряжения, он будет зависеть от разности фаз j=j1-j2 (плотность тока (тока Джозефсона) равна j = j0 sinj). Это явление непосредственно определяется такой фундаментальной кванто-механической характеристикой, как фаза волновой функции.

Если к контакту приложить постоянную разность потенциалов (нестационарный эффект), то через него потечет переменный сверхпроводящий ток. Возникающие в сверхпроводнике куперовские пары проходят через диэлектрический слой и приобретают при этом энергию 2eU. Так как сопротивление отсутствует, то полученная энергия излучается в виде кванта с энергией

 

. (75)

 

На опыте и наблюдается электромагнитное излучение с частотой

 

 (76)

 

(излучать электромагнитное волны может только переменный ток—именно он течет через контакт Джозефсона). В выражение для частоты излучения входит удвоенный заряд электрона, так как волны излучаются электронными парами. То, что частота излучения соответствует вышеприведенной формуле, является экспериментальным доказательством наличия в проводнике куперовских пар электронов. Эффект Джозефсона позволяет создавать переменный ток с помощью постоянной разности потенциалов. Правда, этот эффект является очень слабым и труднонаблюдаемым. По – видимому, нижний предел частот, который можно получить таким способом, -1010-1011 Гц.

В эффекте Джозефсона впервые в истории физики экспериментально обнаружено, что макроскопическое явление – электрический ток – определяется микроскопической характеристикой – фазой волновой функции и квантуется, принимая лишь дискретные значения. При этом «размываются» границы между макро- и микрофизикой.[5,С.509]

Эффект Джозефсона используется в работе мощных сверхпроводящих квантовых генераторов.

 


2.11 Квантование магнитного потока (макроскопический квантовый эффект)

 

Изучение явлений, происходящих при температурах, близких к 00К, показало, что возможно макроскопическое квантование, т. е. квантование величин, характеризующих макроскопические тела, размеры которых в 105 раз больше атомных размеров. Вблизи 00К оказывается возможным непосредственное наблюдение квантовых закономерностей.

Рассмотрим этот вопрос на примере электрического тока, протекающего по сверхпроводящему металлическому кольцу. Оказывается, что сверхпроводимость даёт нам пример квантования макроскопической величины – силы тока. Сверхпроводящее кольцо позволяет наблюдать гигантский по масштабам квантовый эффект. Сила тока в сверхпроводящем кольце не принимает любые числовые значения и не изменяется непрерывно. Для всех электронов, движущихся в кольце, возникает гигантская боровская орбита и все квантовые закономерности, характеризующие её в атоме водорода, как бы переносятся на электроны в сверхпроводящем кольце.

Сверхпроводящий ток, как и всякий ток, связан с магнитным полем. Поэтому квантование тока означает, что и индукция магнитного поля также квантуется и может принимать только ряд дискретных значений. Следовательно, будет квантоваться и магнитный поток Ф = π r2 В сквозь сечения кольца. Другими словами, Ф = N Ф0, где N – целое число, Ф0 – некоторая минимальная порция – квант магнитного потока. Магнитный поток – макроскопическая величина, и возможность его квантования означает переход к гигантским по сравнению с атомными масштабами квантования.

Вычислим величину кванта магнитного потока. Для этого применим условие квантования Бора к электронам, движущимся в кольце:

 


, (77)

 

где r – радиус кольца, в котором циркулирует сверхпроводящий ток. Так как радиус кольца задан, то написанное условие нужно рассматривать как условие квантования импульса p = m υ. Квантование импульса означает, что скорость, ток, а следовательно, и магнитный поток квантуются. Найдём связь р и Ф. Энергия тока, текущего по контуру с индуктивностью L, равна W = ½ LJ2, а магнитный поток Ф = LJ. Следовательно, W = 1/2JФ. Сила тока на единицу длины кольца, создаваемая в кольце n электронами, движущимися со скоростью υ, равна J = neυ/(2πr). Таким образом,

 

W = Фneυ/(2πr*2). (78)

 

С другой стороны, энергия n электронов, движущихся по кольцу со скоростью υ, равна

 

W = ½ nmυ2 = ½ npυ. (79)

 

Из двух последних формул находим, что импульс электрона в сверхпроводящем кольце

 

p = Фe/(2πr). (80)

 

В сверхпроводнике электроны разбиваются на пары, поэтому импульс электронной пары p = Фe/(πr). Тогда

 

Фe/π =Nh/(2π), (81)

 

откуда Ф = NФ0, где N = 1, 2, 3, …, Ф0 = h/(2e) = 2.06785* 10-15 Вб – квант магнитного потока Ф0.

Если магнитное поле внутри цилиндра соответствует одному кванту магнитного потока Ф0, то оно при этом будет составлять ~ 1% магнитного поля Земли. Квант магнитного потока соответствует макроскопическому значению магнитной индукции.

Экспериментально квант магнитного потока определён на основе эффекта Джозефсона. Было доказано, что при некоторых условиях критический ток через контакт Джозефсона оказывается периодически зависящим от потока внешнего магнитного поля с периодом, равным кванту потока Ф0. На этом пути была экспериментально найдена величина Ф0.

 

2.12 Найтовский сдвиг

 

Частота ядерного магнитного резонанса (ЯМР) для одного и того же ядра зависит от того, входит ли это ядро в состав металла или в состав диэлектрика. Сдвиг частоты ЯМР в металле по сравнению с диэлектриком, называемый сдвигом, или смещением Найта, объясняется большой вероятностью пребывания электронов проводимости в месте нахождения ядер. Эти электроны намагничиваются внешнем полем, и полное магнитное поле на ядре оказывается несколько большим внешнего поля. Поскольку магнитная восприимчивость нормальных металлов практически не зависит от температуры, постоянен в них и найтовский сдвиг.

В сверхпроводниках найтовский сдвиг наблюдают в эмульсиях или стопках тонких плёнок (размер частиц эмульсии или толщина плёнок должны быть гораздо меньше δ, чтобы магнитное поле в них было достаточно однородным). Величина сдвига ниже Тк уменьшается, но даже при Т=0 сохраняет конечное значение, достигающее 75% от нормального. На первый взгляд это противоречит теории сверхпроводимости. Действительно, в основном состоянии с наименьшей энергией электроны объединены в куперовские пары, полный электронный спин которых равен нулю. Поэтому намагнитить электронную систему можно, лишь разорвав пары, но для этого нужна конечная энергия. Отсюда следует, что магнитный момент не может линейно зависеть от внешнего поля, т.е. магнитная восприимчивость равна нулю.

Наиболее убедительное объяснение конечной величины найтовского сдвига в сверхпроводниках при Т=0, по видимому, заключается в следующем. В образцах малых размеров электроны испытывают рассеяние от границ образцов и границ кристаллитов (величина которых меньше или порядка размеров образцов). Благодаря спин-орбитальному взаимодействию существует некоторая вероятность того, что при таком рассеянии спин электрона изменит свою ориентацию. Благодаря этому электронная система может намагничиваться в слабом магнитном поле.

 

2.13 Высокотемпературная сверхпроводимость

 

Чрезвычайно важным с практической точки зрения является вопрос высокотемпературной сверхпроводимости. Из всей известных материалов наибольшей температурой перехода в сверхпроводящее состояние обладает сплав (Nb3Al)4 + Nb3Ge; Тк для него ~ 200К. Для её получения требуется применение жидкого гелия. Рассмотренный ранее механизм перехода в сверхпроводящее состояние основан на межэлектронном взаимодействии посредством кристаллической решетки, то есть за счет обмена фононами. Теория БКШ показывает, что Тк непосредственно связана с интенсивностью силы притяжения, возникающей между электронами, и определяется следующим соотношением:

 

Тк = θе-1/g, (82)

 

где θ – температура Дебая, g – константа, зависящая от силы притяжения между электронами и по порядку величины не превосходящая ½, а практически всегда меньше ½. При g = 1/3 максимальная критическая температура, которую можно получить для материала с θ =5000К, составляет: Тк = θе-3 = 0,05θ ~ 250К. Конечно, эта оценка является очень грубой, но она достаточна для того, чтобы понять, что достичь высокотемпературной сверхпроводимости (Тк > 70-1000К) не представляется возможным. Следует подчеркнуть, что даже достижение Тк ~ 250К было бы исключительно важным с практической точки зрения, так как позволило бы перейти от жидкого гелия к значительно дешёвому жидкому водороду. Таким образом, для реализации высокотемпературной сверхпроводимости необходимо искать другой механизм корреляции электронов.

Идея высокотемпературной сверхпроводимости (ВТСП) в органических соединениях была выдвинута в 1950г. Ф.Лондоном и лишь спустя 14 лет появился отклик на эту идею в работах американского физика В.Литтла, который выдвинул смелое предположение, что возможны сверхпроводники не металлической, а органической природы. Важное место в своих рассуждениях Литлл отводил полимерным молекулам, в основной цепи которых есть чередующиеся единичные и кратные связи (химики называют такие связи сопряжёнными). Дело в том, что каждая химическая связь, соединяющая атомы, - это пара принадлежащих им обоим электронов. В цепочке сопряженных связей степень обобществления электронов ещё выше: каждый из них в равной мере принадлежит всем атомам цепочки и может свободно перемещаться вдоль нее. Корреляция электронов, движущихся вдоль цепочки, осуществляется за счет поляризации этих фрагментов, а не кристаллической решетки. Поскольку масса электрона на несколько порядков меньше массы любого иона, поляризация электронных фрагментов может быть более сильной, а критическая температура более высокой, чем при фоновом механизме. Эту особенность сопряженных связей в основной цепи полимерной молекулы Литлл полагал важной предпосылкой для перехода в сверхпроводящее состояние. Необходимой для перехода он считал и особую структуру ответвлений от основной цепи. Составив проект своего полимера, учёный заключил: вещество с такими молекулами обязано быть сверхпроводящим; более того - в это состояние оно должно переходить при не очень низкой температуре, возможно, близкой к комнатной. Схематическая модель органического сверхпроводника изображена на рис 13.

 

Рис. 13

 

Проводники, свободные от всяких энергетических потерь при совершенно обычных условиях, конечно же, совершили бы революцию в электротехнике. Идея американского физика была подхвачена во многих лабораториях различных стран. Однако довольно быстро выяснилось, что придуманный Литллом полимер никак не мог перейти в сверхпроводящее состояние. Но энтузиазм, рожденный смелой идей, дал свои плоды, пускай и не там, где они предвиделись на первых порах. Сверхпроводимость была всё - таки обнаружена за пределами мира металлов. В 1980 году в Дании группа исследователей под руководством К. Бекгарда, экспериментируя с органическим веществом из класса ион-радикальных солей, перевела его в сверхпроводящее состояние при давлении 10 килобар и температуре на 0,9 градуса выше абсолютного нуля. В 1983 году коллектив советских физиков, возглавляемый доктором физико-математических наук И.Ф. Щеголевым, добился от вещества того же класса перехода в сверхпроводящее состояние уже при 7 градусах абсолютной шкалы температур и при нормальном давлении. В ходе всех этих поисков и проб вниманием исследователей не был обойден и карбин. (Карбин - органическое вещество, крайне редко встречающееся в природе. Структура которого - бесконечные линейные цепочки из атомов углерода. Свою структуру сохраняет при нагреве до 2000 °С, а затем, начиная примерно с 2300 °С, она перестраивается по типу кристаллической решётки графита. Плотность карбина составляет 1,9-2,2 г/см?.

 

(…=С=С=С=С=С=С=С=С=С=С=С=…))

 

В основе теоретической модели высокотемпературной сверхпроводимости, разработанной академиком В.Л.Гинзбургом, лежит так называемый экситонный механизм взаимодействия электронов. Дело в том, что в электронной системе существуют особые волны - экситоны. Подобно фононам они являются квазичастицами, перемещающимися по кристаллу и не связанными с переносом электрического заряда и массы. Модельный образец такого сверхпроводника представляет собой металлическую пленку в слоях диэлектрика или полупроводника. Электроны проводимости, движущиеся в металле, отталкивают электроны диэлектрика, то есть окружают себя облаком избыточного положительного заряда, который и приводит к образованию электронной пары. Такой механизм корреляции электронов предсказывает весьма высокие значения критической температуры (Тc=200 К).

В конце 1986 г. было опубликовано сообщение К. Мюллера и Дж. Беднореца из Швейцарии об открытии сверхпроводимости керамики лантан – барий – медь – кислород при температуре, превышающей 300К. Вскоре пришли сообщения из Японии и США о сверхпроводимости керамики лантан – стронций – медь – кислород при температурах 40-500К. В СССР в лаборатории А. Головашкина в Физическом институте АН СССР было обнаружено, что в керамике на основе иттрия сверхпроводимость начинается при температуре 1200К. В настоящее время ведутся интенсивные поиски сверхпроводников с температурами, более высокими (возможно даже комнатными), которые уже привели к открытию обширного класса материалов, переходящих в сверхпроводящее состояние при азотных температурах. Весьма перспективны в этом отношении полимерные сверхпроводники.

Наряду с изысканием сверхпроводящих материалов с повышенной Тк, основанных на эффекте спаривания электронов проводимости через положительно заряженные ионы решётки, в лабораториях всего мира ведутся интенсивные поиски других механизмов взаимодействия электронов, способных привести к более эффективному их притяжению, а следовательно, к получению сверхпроводящих материалов со значительно более высокой температурой перехода Тк..[6,С.192]

1) В 1957 году создана универсальная теория БКШ, которая дала принципиальное объяснение явлению сверхпроводимости.

2) Электронную систему в сверхпроводнике можно представить как состоящую из связанных пар электронов (куперовских пар), а возбуждение, как разрыв пары.

3)Электронная система, находящаяся в сверхпроводящем состоянии, отделена от основного энергетической щелью ширины Есв.

4) В точке перехода в сверхпроводящее состояние теплоёмкость меняется скачком.

5) На основе теории сверхпроводимости было открыто явление, которое названо эффектом Джозефсона. Он заключается в протекании сверхпроводяшего тока через тонкий слой диэлектрика, разделяющий два сверхпроводника. Различают два эффекта Джозефсона – стационарный и нестационарный.

6) Магнитный поток в сверхпроводнике квантуется и может принимать только ряд дискретных значений.

7)Промежуточное состояние сверхпроводников I рода зависит от формы образца, его расположения во внешнем магнитном поле и возникает далеко не всегда. Смешанное же состояние сверхпроводников II рода является внутренним свойством и возникает в образцах любой формы, как только магнитное поле достигает критического значения.


Глава 3. Применение сверхпроводимости в науке и технике

 

Со времён открытия сверхпроводимости обсуждаются возможности технического использования этого явления. Непонятная сверхпроводимость не давала покоя и физикам, и инженерам. Прошло почти полвека, прежде чем сверхпроводимость начала выходить из стен лабораторий на дорогу практического применения. Этому способствовали несколько обстоятельств. Здесь и развитие техники низких температур, и появление теоретических работ, объяснивших природу сверхпроводящего состояния, и открытие новых квантовых эффектов, и, конечно, создание сверхпроводящих материалов с высокими критическими параметрами.

Успехи экспериментального и теоретического исследований дали реальную возможность приступить к работам по освоению этого физического явления. Сверхпроводимость начала как бы вторую жизнь, но теперь уже не в качестве любопытного феномена, а как явление, открывающее перед наукой и техникой весьма серьёзные перспективы. В последние годы, особенно после создания теории сверхпроводимости, интенсивно развивается техническая сверхпроводимость.

 

3.1 Сверхпроводящие магниты

 

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются особые сверхпроводники второго рода. Это некоторые сплавы, тонкие сверхпроводящие плёнки. В такие сверхпроводники магнитные поля, превышающие критические, проникают в вещество в виде нитей, пронизывающих образец. Вещество между нитями оказывается сверхпроводящим, и сильные токи могут привести к созданию сверхсильных магнитных полей. Одной из серьёзных проблем, с которой пришлось встретиться проектировщикам и создателям сверхмагнитов, явилась проблема деградации проволоки в соленоидах. Обнаружилось, что значения критических токов, полученных на коротких образцах, не воспринимаются на длинных отрезках. В результате соленоиды, рассчитанные на одно магнитное поле, дают в действительности другое, более слабое.

Исследования показали, что основной причиной эффекта деградации является скачкообразное проникновение магнитного потока в сверхпроводник. При возрастании тока и поля в соленоиде целые связки вихревых нитей, закреплённых на дефектах или неоднородностях кристаллической решётки, срываются и под действием силы Лоренца начинают скачкообразно перемещаться по материалу. Срыв и перемещение вихревых нитей сопровождаются выделением тепла и повышением локальной температуры. Если это тепло отводится недостаточно быстро, то температура поднимается выше критической, возникает зародыш нормальной фазы, который в зависимости от размеров и теплоотдачи может привести к переходу всего соленоида в нормальное состояние.

Стабилизируют сверхпроводящее состояние соленоидов двумя способами: не допускают появления скачков потока, приводящих к возникновению нормальной фазы; создают условия, при которых нормальная фаза не распространялась бы по тонконесущему элементу и не выводила весь соленоид из сверхпроводящего состояния. В первом случае говорят о внутреннем способе стабилизации материала, во втором – о стационарном.

Внутренне стабилизированные сверхпроводящие материалы состоят из тонких нитей сверхпроводника, окружённых нормальным металлом с высокой электро- и теплопроводностью, например медью или алюминием. При хорошем электрическом контакте сверхпроводника с нормальным покрытием (в случае перехода отдельных участков сверхпроводника в нормальное состояние) ток закорачивается через низкоомное покрытие. Местные перегревы ограничиваются, а отвод тепла гелием с большой поверхности упрощается. При достаточной толщине нормального металла таким путём можно получить полностью стабилизированные проводники. Из них изготавливают сравнительно небольшие магнитные системы с запасённой в магнитном поле энергией, не превышающей нескольких сотен килоджоулей.

При создании крупных сверхпроводящих систем с энергией в десятки и сотни мегаджоулей используются сверхпроводящие материалы со стационарной стабилизацией. В этом случае сверхпроводник занимает небольшой процент площади сечения материала (от 5 до 15% в зависимости от величины системы), а остальное – стабилизирующий металл. Конструкция обмотки, используемой при этом, обеспечивает надёжное охлаждение витков соленоида. А в ряде случаев, если применяется принудительное охлаждение магнитной системы, в теле самого проводника предусматриваются специальные каналы для гелия. Возникшие в результате какого-либо возмущения участок нормальной фазы не распространяется на весь соленоид, так как окружающий нормальный металл способствует быстрому охлаждению нити и отводу тепла в гелий.

Использование магнитных систем для исследований в физике высоких энергий – одно из важнейших направлений в современной прикладной сверхпроводимости. Это магнитные системы ускорителей, каналов транспортировки и сепарации пучков, разнообразные детектирующие системы. Первые сверхпроводящие соленоиды использовались физиками для камер, где искривляемые магнитными полями траектории пролетающих частиц определялись пузырьками вскипающей жидкости. По кривизне траекторий (треков) можно определить как знак заряда частицы, так и её импульс. Сверхпроводящие соленоиды позволяют в значительной степени уменьшить габариты и потребление энергии в синхрофазотронах и других ускорителях элементарных частиц.

Особо следует сказать о применении сверхпроводящих магнитов в приборах, использующих явление ядерного магнитного резонанса, сокращённо ЯМР. С их помощью можно определить структуру вещества. Специфика применения сверхпроводящих магнитов для исследований с помощью ЯМР состоит в том, что необходимо иметь в пространстве чрезвычайно однородное поле. Техника ЯМР требует индукций магнитного поля от 1 до 10 Тл с высокой однородностью. С помощью обычных магнитов можно было добиться такой однородности в полях с индукцией 2 Тл, и то только за счёт сложных и дорогих источников питания. У сверхпроводящих магнитов есть качество, позволяющее получить высокую однородность в полях, значительно превышающих индукцию, равную 2 Тл, фактически без затрат энергии. Таким качеством является способность сверхпроводящих магнитов работать в режиме замороженного поля. Это означает, что в сверхпроводящей цепи существует не меняющийся во времени электрический ток.

Сверхмагниты, создающие в малых объёмах сильное и очень однородное поле, необходимы физикам, изучающим твёрдое тело. Сильное магнитное поле резко заворачивает траектории электронов, летящих в толще образца. Измерение частоты колебаний этого движения позволяет определить такие важные характеристические параметры электронной системы, как эффективная масса электронов, длина свободного пробега между двумя соударениями, концентрация частиц. В относительно слабых полях круговые траектории, которые описывают электроны под действием силы Лоренца, очень велики, и такие исследования можно проводить лишь на очень чистых образцах с большой длиной свободного пробега. В сильных полях, создаваемых сверхмагнитами, радиус круговых орбит уменьшается и появляется возможность исследовать вещества с меньшей длиной свободного пробега. Становится также возможным сознательно вводить центры рассеивания электронов и изучать влияние этих центров на электронную систему. В решении этих проблем сверхпроводящие магниты незаменимы и сейчас широко используются в физических лабораториях. Маленькие сверхсильные соленоиды в комплекте с системой охлаждения стали уже промышленной продукцией.

 

3.2 Сверхпроводящая электроника

 

Криоэлектроника очень молодая наука, но несмотря на свою молодость, она имеет уже существенные достижения и обнадёживающие перспективы. За последние годы электроникой создано множество измерительных приборов. Так, исчезновение электрического сопротивления при переходе в сверхпроводящее состояние позволяет сконструировать чувствительные датчики малых электрических сигналов. Сверхпроводящие гальванометры оказались 100…1000 раз чувствительнее обычных. Благодаря чрезвычайно малому внутреннему сопротивлению такие гальвонометры способны уловить напряжения порядка 10-11…10-12 В. С помощью сверхпроводников можно уловить чрезвычайно слабое излучение. Для этой цели используют приборы, называемые болометрами. Его назначение состоит в измерении мощности теплового излучения, где мерой мощности принимаемого излучения служит изменение электрического сопротивления. В связи с тем, что они работают при низких температурах, в них очень слабы флуктационные шумы. Для болометра со сверхпроводниковым приёмником площадью 3*3 мм при температуре 4 К и времени измерения 1с мощность шумов составляет 10-18 Вт. Чувствительный элемент – датчик представляет собой фольгу или плёнку, напылённую на тонкую слюдяную подложку. Датчики обычно изготавливают из олова, тантала или нитрида ниобия и свободно подвешивают в некотором объёме, охлаждаемом жидким гелием. Для пропускания излучения корпус приёмника должен иметь окно, прозрачное в требуемой области длин волн. Сверхпроводящие приёмники могут быть использованы также для регистрации α-частиц или других частиц высокой энергии. Достоинством является их быстродействие: за 1 с сверхпроводниковый счётчик способен регистрировать около 10 млн. частиц.

Простейший квантовый магнитометр — СКВИД (сверхпроводяший квантовый интерференционный прибор) представляет собой сверхпроводящее кольцо с двумя джозефсоновскими туннельными контактами. Схематически такое устройство показано на рисунке 14. Это полный аналог столь популярного в оптике опыта с интерференцией от двух щелей, только здесь интерферируют не световые волны, а два джозефсоновских тока, каждый со своей амплитудой и фазой. Концы сверхпроводников 1 и 2 присоединены к прибору, который измеряет ток, равный сумме (с учетом фаз!) токов 1 и 2. Таким образом, в СКВИДе волна сверхпроводящих электронов расщепляется на две, каждая из которых проходит свой туннельный контакт, а затем обе половинки сводятся вместе.

 

Рис 14

 

СКВИДы бывают двух типов: СКВИД, работающий на постоянном токе, и СКВИД, работающий на переменном высокочастотном токе. СКВИД на переменном токе устроен несколько проще, он содержит один контакт, но описание его работы сложнее, и поэтому мы здесь рассмотрим работу магнитометра на постоянном токе.

Поскольку оба туннельных контакта одинаковы и расположены симметрично, то в отсутствие поля созданный предварительно постоянный ток разделится между ними поровну, фазы его одинаковы и никакой интерференции не возникает. Но если теперь включить магнитное поле, то оно будет наводить в контуре циркулирующий сверхпроводящий ток. Этот ток, направленный, например, по часовой стрелке, в контакте 1 будет вычитаться из постоянного внешнего тока, а в контакте 2 складываться. Теперь обе ветви будут иметь разные токи, туннельные контакты разбалансируются, между ними возникнет разность фаз. Волны сверхпроводящих электронов, пройдя через контакты и вновь соединившись, будут интерферировать, интерференция проявится как зависимость критического тока СКВИДА Ik от внешнего магнитного поля. Эта зависимость показана на рисунке 15 (магнитный поток измеряется в естественных единицах – квантах потока Ф0).

 

Рис.15

 

Таким образом, критический ток контура с двумя джозефсоновскими контактами осциллирует в зависимости от внешнего поля, достигая максимума, когда пронизывающий контур магнитный поток равен целому числу квантов. Такой ступенчатый характер зависимости позволяет «чувствовать» отдельные флюксоиды - кванты потока, хотя величина их очень мала (порядка 10-15Вб). Магнитный поток внутри контура меняется, хотя и на малую величину: ΔФ = Фо, но скачком, т. е. за очень короткий промежуток времени Δt. Так что скорость изменения магнитного потока ΔФ/Δt при таком скачкообразном характере изменения потока оказывается очень большой. Ее можно измерить, например, по величине ЭДС индукции, наводимой в специальной измерительной катушке прибора. В этом и состоит принцип работы квантового магнитометра.

Сегодня сверхчувствительные магнитометры, измеряющие индукции магнитных полей с точностью до 10-15 Тл - это уже промышленная продукция, находящая широкое применение в измерительной технике. С их помощью удалось осуществить ряд тонких экспериментов, исследовать новые физические явления.

Сверхпроводящие магнитометры оказались очень удобными для измерений магнитной восприимчивости различных веществ. Благодаря своей огромной чувствительности они позволяют измерить очень малые восприимчивости и восприимчивости очень малых количеств вещества. Это последнее обстоятельство особенно важно для биохимических исследований. Градиометры на СКВИДах уже позволили измерить предельно малую восприимчивость белков. Применялись они также для измерения восприимчивости различных геологических пород и даже для измерения магнитного момента образцов лунного грунта.

Физики, изучающие микромир, надеются, что квантовые магнитометры помогут им в поисках кварков и гравитационных волн. А вот геофизикам с помощью СКВИДов удалось зарегистрировать чрезвычайно слабые вариации магнитного поля Земли при различных катаклизмах (извержениях, землетрясениях). Установлено, например, что за несколько дней до землетрясения в области линии сдвига земной коры возникают возмущения магнитного поля. Такие данные, помимо их научного значения, могут оказаться ценным средством прогнозирования стихийных явлений.

Самое лучшее, что создает электроника, она с готовностью отдает медицине для сохранения жизни и здоровья человека. Стоило СКВИДам появиться на свет, как сразу же им и здесь нашлось применение. С их помощью удалось получить идеальную кардиограмму, но не электрическую, а магнитную, отобразив с невиданной точностью мельчайшие импульсы, сопровождающие работу сердца. Ведь те же самые токи, которые измеряются при снятии обычной электрокардиограммы (или электроэнцефалограммы), создают также магнитное поле. Токи эти очень слабы, и соответственно магнитные поля имеют порядок миллиардных и менее долей тесла. Понятно, что подобные измерения могут проводиться только в специально экранированных от посторонних магнитных полей помещениях. Это, конечно, усложняет их применение, но все искупается огромной чувствительностью квантовых магнитометров; с их помощью обнаруживаются такие явления, которые не удавалось обнаружить электрическими методами исследования. Очень ценными для медиков оказались, например, магнитографические исследования тонких физиологических процессов. Были зарегистрированы магнитограммы работы мышц, желудка, глаза при различных освещенностях и др. Недалек тот день, когда магнитограммы, снятые с помощью СКВИДов, принципиально изменят существующие возможности для диагностики сердечных заболеваний.

Основные системы со СКВИДами еще полностью не изучены и их еще следует тщательно исследовать. Но уже сейчас устройства, основанные на применении особенностей контактов слабосвязанных сверхпроводников, следует рассматривать как технику, потенциально пригодную для решения любых приборных проблем, требующих предельно высоких параметров чувствительности, точности и быстродействия.[19,С.147]

Сверхпроводники применяются при создании вычислительных машин. Сверхпроводящий ток является незатухающим, поэтому его можно использовать в качестве прекрасного запоминающего устройства, хранящего большие и легко считываемые запасы информации. Скорость «вспоминания» сверхпроводящих устройств весьма велика. Они в состоянии за 10-6с. выбрать нужную информацию из 1011 её единиц.

В вычислительной технике используется двоичная система. Пребывание сверхпроводников в двух состояниях – нормальном или сверхпроводящем – и быстрота их перехода из одного состояния в другое под действием изменения температуры или магнитного поля позволяют использовать сверхпроводники в качестве элементов вычислительных машин. Сверхпроводники используются в качестве переключающих устройств, работающих с высокой скоростью при малых затратах мощности. В подобных устройствах – криотронах – скорость переключения достигает 2 нс. Высокая скорость и простота устройства лежат в основе использования сверхпроводящих криотронов в вычислительной технике. Явление сверхпроводимости применяют для устройства модуляторов (преобразователей слабого постоянного тока в переменный ток звуковой частоты), персисторов и персистронов (сверхпроводящих запоминающих устройствах).

 

3.3 Сверхпроводимость и энергетика

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...