Метод узловых потенциалов
Метод узловых потенциалов позволяет составить систему уравнений, по которой можно определить потенциалы всех узлов схемы. По известным разностям узловых потенциалов можно определить токи во всех ветвях. В схеме на рисунке 4.3 имеется четыре узла. Потенциал любой точки схемы можно принять равным нулю. Тогда у нас останутся неизвестными три потенциала. Узел, величину потенциала которого выбирают произвольно, называют базисным. Укажем в схеме произвольно направления токов. Примем для схемы?4 = 0.
Запишем уравнение по первому закону Кирхгофа для узла 1. (4.6) В соответствии с законами Ома для активной и пассивной ветви , где - проводимость первой ветви. , где - проводимость второй ветви. Подставим выражения токов в уравнение (4.6). (4.7) где g11 = g1 + g2 - собственная проводимость узла 1. Собственной проводимостью узла называется сумма проводимостей ветвей, сходящихся в данном узле.
(4.8) (4.9) Замечание. Если в какой-либо ветви содержится идеальный источник ЭДС, необходимо один из двух узлов, между которыми включена эта ветвь, выбрать в качестве базисного, тогда потенциал другого узла окажется известным и равным величине ЭДС. Количество составляемых узловых уравнений становится на одно меньше.
Метод двух узлов Схема на рис. 4.4 имеет два узла. Потенциал точки 2 примем , , Рис. 4.4 где , , - проводимости ветвей. В общем виде: . В знаменателе формулы - сумма проводимостей параллельно включенных ветвей. В числителе - алгебраическая сумма произведений ЭДС источников на проводимости ветвей, в которые эти ЭДС включены. ЭДС в формуле записывается со знаком "плюс", если она направлена к узлу 1, и со знаком "минус", если направлена от узла 1.
Читайте также: Внешняя контактная разность потенциалов Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|