Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Питательные среды, их классификация




 

Питательные среды необходимы для получения чистой культуры микроорганизмов, изучения особенностей их морфологии и физиологии, для длительного сохранения микробов в лабораторных условиях.

Классификация питательных сред. По составу: а) естественные – это натуральные продукты животного и растительного происхождения (молоко, яйца, сыворотка, кровь); б) искусственные – готовят по определенным рецептам из отваров животного происхождения с добавлением солей и пептона; в) синтетические – содержат определенные химические соединения в точно указанных концентрациях (например, среда Сотона для возбудителя туберкулеза).

По консистенции: 1) жидкие – МПБ (мясо-пептонный бульон), пептонная вода; их используют для изучения биохимических свойств микробов, накопления биомассы; 2) полужидкие – обычно используют для сохранения культур микробов; 3) плотные – мясо-пептонный агар (МПА) – используют для выделения чистой культуры, получения отдельных колоний, определения количественного роста, антагонистических свойств бактерий, чувствительности к антибиотикам).

По назначению: 1) универсальные – МПА, МПБ; 2) специальные – используют для выращивания определенных видов микробов (сахарный бульон - для стрептококков, кровяной агар – для менингококков, среда Сабуро – для грибов); 3) элективные – используют для выделения определенных видов микробов, другие микробы или совсем не растут на таких средах, или их развитие сильно задерживается (щелочная пептонная вода с рН 9,0 для Vibrio choleraе); 4) дифференциально-диагностические среды используют для изучения биохимических свойств микробов и отличия (дифференцировки) одного вида микроба от другого по характеру их ферментативной активности. Например, среда Эндо, в состав которой входят МПА, лактоза и фуксин, обесцвеченный сульфитом натрия. Исходная среда имеет светло-розовый цвет. При разложении лактозы образуется ацетальдегид, который реагирует с сульфитом натрия, при этом колонии окрашиваются в ярко-красный цвет. Поэтому Е. coli, которая разлагает лактозу, при росте на среде Эндо образует красные колонии, а сальмонеллы и шигеллы – бесцветные, т.к. они лактозу не разлагают.

Требования, предъявляемые к питательным средам: стерильность; прозрачность; достаточное содержание основных органических и зольных элементов; наличие факторов роста (витамины, липиды); соответствующий рН (7,2-7,4); изотоничность (0,85% NaCl); определенный окислительно- восстановительный потенциал и вязкость.


IV. ОБЩАЯ ХАРАКТЕРИСТИКА ВИРУСОВ

 

Начало истории вирусологии связано с именем Д.И. Ивановского, который в 1892 г. опубликовал работу по изучению мозаичной болезни табака. Он отметил, что возбудитель – мельчайшее существо, проходит через бактериальные фильтры, не растет на питательных средах, невидим в световом микроскопе.

В 1898 г. Леффлер и Фрош открыли вирус ящура.

В 1901 г. Рид и Кэррол выделили вирус из трупов людей, умерших от желтой лихорадки.

ДўЭррель в 1910 г. обнаружил вирусы бактерий – бактериофаги.

Вирусы широко распространены в природе, окружающей среде и практически вездесущи. Они находятся в воздухе, воде, пище, космосе и в живых организмах, а вирусы бактерий – бактериофаги – в бактериях.

Медицинская вирусология изучает лишь вирусы, патогенные для человека или значимые для медицины (бактериофаги).

Основной задачей медицинской вирусологии является изучение морфологии, физиологии, генетики, экологии и эволюции вирусов и разработка методов диагностики, лечения и профилактики инфекций у человека.

Вирусы – это облигатные внутриклеточные паразиты, имеющие собственный геном, структурные белки и ферменты, способные репродуцироваться только в чувствительных к ним клетках животных, растений, бактериях. Это своеобразная форма жизни, биологически активные структуры, которые подчиняются законам эволюции, не имеют типичного клеточного строения, состоят из белков и одной нуклеиновой кислоты (ДНК или РНК), где закодирована вся генетическая информация вируса. Вирусы не обладают собственными метаболическими и энергетическими системами; их размножение происходит с использованием белоксинтезирующих и энергетических систем клетки хозяина, поэтому они являются облигатными внутриклеточными паразитами и размножаются в цитоплазме или в ядре клеток. Они используют рибосомы клетки хозяина для синтеза собственных белков. Имеют особый способ размножения – дизъюнктивную (разобщенную) репродукцию: в клетке отдельно синтезируются нуклеиновые кислоты и белки вирусов, а затем происходит сборка их в вирусные частицы. Возможен второй путь – генетическая информация вируса интегрируется с геномом клетки и образуется провирус (например, у ретровирусов).

Вирусы имеют малые размеры (от 15 до 250 нм и более). Как и другие формы жизни вирусы обладают наследственностью и изменчивостью, многие вирусы сохраняют жизнеспособность при замораживании, высушивании, резистентны к антибиотикам, но чувствительны к высокой температуре.

Вирус вне клетки – вирион, имеет нуклеиновую кислоту (ДНК или РНК) и белковую оболочку, способен кристаллизоваться, обладает инфекционностью, т.е. благодаря адресным белкам, белкам прикрепления, ферментам проникает в клетку, где его называют «вирус», интегрированный с ДНК хозяина вирус называется провирус.

Кроме типичных вирусов известны необычные инфекционные частицы – прионы и вироиды.

Прионы – белковые инфекционные частицы, которые имеют вид фибрилл размером 10-20х100-200 нм, массу 30 кД, не содержат нуклеиновой кислоты, устойчивы к нагреванию, к действию протеаз, ультрафиолетовых лучей, ультразвука и ионизирующей радиации. Прионы возникают как продукты мутации собственного гена или попадают в организм при употреблении мяса животных, содержащего прионы. Прионы накапливаются в пораженном органе, не вызывая цитопатогенного действия (ЦПД), иммунного ответа и воспалительных реакций. Они могут блокировать или активировать гены человека или животного.

Вироиды – это небольшие молекулы кольцевой суперспирализованной РНК, не содержащие белка, вызывающие заболевания у растений, возможно и у млекопитающих.

 

Классификация вирусов

В силу своих особенностей вирусы выделены в отдельное надцарство Vira, в котором по типу нуклеиновой кислоты различают рибовирусы и дезоксирибовирусы (табл. 1).

Подцарства делятся на семейства, которые подразделяются на подсемейства и роды. Вид – совокупность вирусов, имеющих почти идентичные геном (ДНК или РНК), свойства и способность вызывать определенный патологический процесс. Названия семейства имеют окончание viridae, подсемейство – virinae, рода – virus.

Признаки, используемые для классификации вирусов: 1) тип нуклеиновой кислоты – ДНК или РНК; 2) их структура (однонитевая, двунитевая, линейная, кольцевая, фрагментированная, нефрагментированная с повторяющимися и инвертированными последовательностями); 3) структура, размеры, тип симметрии, число капсомеров; 4) наличие или отсутствие внешней оболочки (суперкапсида); 5) антигенная структура; 6) феномены генетических взаимодействий; 7) круг восприимчивых хозяев; 8) географическое распространение; 9) внутриядерная или цитоплазматическая локализация; 10) чувствительность к эфиру и детергентам; 11) путь передачи инфекции.

Для определения принадлежности к семейству ретровирусов обязательно учитывается наличие фермента обратной транскриптазы.

Вирусы, вызывающие инфекционные процессы у человека, входят в состав как ДНК-содержащих, так и РНК-содержащих вирусных семейств (см. табл. 1).

 

Таблица 1.

 

Классификация и некоторые свойства вирусов

 

Семейство вирусов Тип нуклеиновой кислоты Размер вириона, нм Наличие суперкапсида Типовые представители
РНК-геномные вирусы
Arenaviridae Аренавирусы фрагментированная, однонитчатая 50-300 + Вирусы Ласса, Мачупо
Bunyaviridae Буньявирусы фрагментированная, однонитчатая, кольцевая 90-100 + Вирусы геморрагических лихорадок и энцефалитов
Caliciviridae Калицивирусы однонитчатая 20-30 - Вирус гепатита Е, калицивирусы человека
Coronaviridae Коронавирусы однонитчатая (+)РНК 80-130 + Коронавирусы человека
Orthomyxoviridae Ортомиксо- вирусы однонитчатая, фрагментированная (-)РНК 80-120 + Вирусы гриппа
Paramyxoviridae Парамиксо- вирусы однонитчатая, линейная (-)РНК 150-300 + Вирусы парагриппа, кори, эпидемического паротита, РС-вирус  
Picornaviridae Пикорнавирусы однонитчатая (+)РНК 20-30 - Вирусы полиомиелита, Коксаки, ЕСНО, гепатита А, риновирусы
Reoviridae Реовирусы двунитчатая РНК 60-80 - Реовирусы
Retroviridae Ретровирусы однонитчатая РНК 80-100 + Вирусы рака, лейкоза, саркомы, ВИЧ
Togaviridae Тогавирусы однонитчатая (+)РНК 30-90 + Вирусы лошадиных энцефалитов, краснухи и др.
Flaviviridae Флавивирусы однонитчатая (+)РНК 30-90 + Вирусы клещевого энцефалита, желтой лихорадки, Денге, японского энцефалита, гепатитов С, G
Rhabdoviridae Рабдовирусы однонитчатая (-)РНК 30-90 + Вирус бешенства, вирус везикулярного стоматита
Filoviridae Филовирусы однонитчатая (+)РНК 200-4000 + Вирусы лихорадки Эбола, Марбург
ДНК-геномные вирусы
Adenoviridae Аденовирусы линейная, двунитчатая 70-90 - Аденовирусы млекопитающихся и птиц
Hepadnaviridae Гепаднавирусы двунитчатая, кольцевая с однонитчатым участком 45-50 + Вирус гепатита В
Herpesviridae Герпесвирусы линейная, двунитчатая   + Вирусы простого герпеса, цитомегалии, ветряной оспы, инфекционного мононуклеоза  
Papovaviridae Паповавирусы двунитчатая, кольцевая 45-55 - Вирусы папилломы, полиомы
Poxviridae Поксвирусы двунитчатая с замкнутыми концами 130-250 + Вирус осповакцины, вирус натуральной оспы
Parvoviridae Парвовирусы линейная, однонитчатая 18-26 - Аденоассоциированный вирус  

4.2. Строение вирусов

 

По строению различают два типа вирусных частиц – простые и сложные. В составе простых вирионов есть ДНК или РНК и белки. У сложных в суперкапсиде содержатся липиды, полисахариды.

Внутренняя структура простых и сложных вируосв сходна, сердцевина вируса – вирусный геном, который содержит от 3 до 100 и более генов.

Морфология и структура вирусов. Простые вирусы имеют одну белковую оболочку – капсид, который состоит из капсомеров – белковых молекул, форма укладки которых определяет тип симметрии. Капсид представлен a-спиральными белками, способными к полимеризации.

Сложные вирусы имеют внешнюю оболочку – суперкапсид, расположенную поверх капсида. В состав суперкапсида входит внутренний белковый слой – М-белок, затем более объемный слой липидов и углеводов, извлеченных из клеточных мембран клетки хозяина. Вирусспецифические гликопротеиды проникают внутрь суперкапсида, образуя фигурные выпячивания (шипы, фибры), которые выполняют рецепторную функцию.

Различают 3 типа симметрии: 1) спиральный, когда капсомеры укладываются по спирали – винтообразная структура нуклеокапсида; 2) кубический (икосаэдрический), когда капсомеры укладываются по граням многогранника (12-20-гранника) – в основе лежит фигура икосаэдра (20-гранника). В зависимости от типа перегруппировки и числа субъединиц число капсомеров будет равным 30, 20, или 12. Вирионы со сложным капсидом, построенным более чем из 60 капсомеров, содержат группы из 5 субъединиц – пентамеры, или из 6 субъединиц – гексамеры; 3) смешанный тип симметрии (у бактериофагов).

Комплекс капсида и генома вируса называют нуклеокапсид. Сложные вирусы имеют суперкапсид (пеплос). Эта поверхностная оболочка вируса, состоит из липидов и белков клеточного происхождения.

Вирусные белки бывают: 1) структурные; 2) неструктурные.

Среди структурных различают: капсидные – входят в состав капсомеров и образуют футляр, защищающий нуклеиновую кислоту; суперкапсидные – это гликопротеиды, которые формируют шипы на поверхности суперкапсида и выполняют: адресную функцию – узнают чувствительную клетку и адсорбируются на ней; прикрепительные белки, которые взаимодействуют со специфическими рецепторами клетки; белки слияния – способствуют слиянию вирусной и клеточной мембран и приводят к образованию симпластов; геномные – обладают антигенными свойсвами, участвуют во взаимодействии с клеткой.

Среди неструктурных белков различают: предшественники вирусных белков (нестабильные); РНК- и ДНК-полимеразы – участвуют в репликации вирусного генома; регуляторные белки – участвуют в репродукции вируса.

Функции белков:обладают антигенными и иммуногенными свойствами; участвуют в распознавании клетки и взаимодействии с ней; защищают геном от нуклеаз; обеспечивают тип симметрии.

Липиды входят в состав суперкапсида и представляют смесь нейтральных фосфо- и гликолипидов, многие из них – продукты мембраны клеток хозяина.

Они обусловливают инфекционность, чувствительность или устойчивость к эфиру; стабилизируют вирусную частицу.

Углеводы входят в состав гликопротеидов суперкапсида. Углеводы и липиды – составная часть гемагглютинина, который вызывает склеивание эритроцитов и обладает антигенной специфичностью.

Различают вирионные и вирусиндуцированные ферменты вирусов. К вирионным относят ферменты транскрипции и репликации (ДНК и РНК-полимеразы); обратную транскриптазу (у ретровирусов), АТФ-азы, эндо- и экзонуклеазы, нейраминидазы.

К вирусиндуцированным относятся ферменты, о которых имеется только информация в вирусном геноме, а появляются они в клетке. Это РНК-полимеразы тога-, орто-, пикорна- и парамиксовирусов; и ДНК-полимеразы у покс- и герпесвирусов.

Нуклеиновые кислоты обеспечивают наследственные признаки; являются хранителями генетической информации; необходимы для репродукции вирусов, многие из них могут вызывать инфекционный процесс самостоятельно, достаточно их проникновения в клетку.

Вирусная ДНК. Молекулярная масса равна 1,106-1,108 дальтон. ДНК может быть одно- или двунитчатой, фрагментированной и сверхспирализованной, линейной или кольцевой, содержит несколько сотен генов. В каждой нити ДНК есть нуклеотидные последовательности, а на концах есть прямые или инвертированные (повернутые на 180о) повторы, которые являются маркерами для отличия вирусной ДНК от клеточной. Эти повторы обеспечивают способность ДНК замыкаться в кольцо для последующих репликации, транскрибирования и встраивания в клеточный геном. Генетическая информация инфекционной ДНК транслируется на мРНК в клетке с помощью полимераз.

Вирусная РНК может быть одно- и двунитчатой, линейной, кольцевой, фрагментированной. У РНК-содержащих вирусов генетическая информация закодирована в РНК таким же кодом, как в ДНК всех других вирусов и клеточных организмов. Вирусные РНК по своему химическому составу не отличаются от РНК клеточного происхождения, но характеризуются разной структурой.

Наряду с типичной для всех РНК однонитевой формой у ряда вирусов имеется двунитевая РНК. В составе однонитевых РНК имеются спиральные участки типа двойной спирали ДНК, образующиеся вследствие спаривания комлементарных азотистых оснований. Вирусы с однонитчатой РНК делятся на 2 группы: (+)РНК (положительный геном) и (-)РНК (отрицательный геном). Вирусная (+)РНК инфекционная и обладает функциями информационной РНК. Она может передовать генетическую информацию на рибосомы, как иРНК. Вирусы с отрицательным геномом не обладают инфекциозностью, т.к. нить (-)РНК выполняет только наследственную функцию и не обладает функцией иРНК. В зараженной клетке на матрице вирусной геномной РНК с помощью фермента транскриптазы осуществляется синтез РНК-комплементарной геному.

Нити (+)РНК вирусов в отличие от (-)РНК имеют специальные концы в виде «шапочки» для специфического узнавания рибосом.

Патогенность вирусов обусловлена совокупностью их свойств: способностью проникать в макроорганизм, связываться с клеточными мембранами и проникать в клетку, управлять метаболизмом и белоксинтезирующей функцией клетки, обеспечивать транскрипцию и репликацию собственного генома и осуществлять весь цикл репродукции вирусов. Все эти свойства зависят от генома вирусов и наличия соответствующих структурных белков и ферментов. Репродукция вирусов приводит к развитию патологии: цитопатогенному (разрушающему) действию, развитию воспаления, повреждению различных клеток и тканей.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...