Состав грунтов. Закон фильтрации. Структура и
Структурные связи в грунтах
Наиболее сложными по своим свойствам являются дисперсные (раздробленные) грунты. Обычно они содержат три составные части (фазы) – минеральную (твердые частицы), жидкую (вода) и газообразную (воздух, водяной пар, другие газы). Мерзлые грунты содержат также лед. Полностью водонасыщенный грунт считают двухфазной системой (грунтовая масса). В дисперсных грунтах выделяют прочносвязанную (гигроскопическая), рыхлосвязанную (пленочная) и свободную (гравитационная и капиллярная) воду. Связанная вода существенно влияет на свойства глинистых грунтов и практически отсутствует в песчаных. Перемещение пленочной воды называется миграцией. Гравитационная вода перемещается (фильтрует) во всех грунтах под действием разности напоров. Для большинства грунтов выполняется закон ламинарной фильтрации Дарси в виде , (1.1) где J = H/ℓ - гидравлический градиент; Кф – коэффициент фильтрации . Из (1.1) К ф - это скорость фильтрации при J =1. В плотных глинистых грунтах фильтрация затрудняется оболочками связанной воды; считают, что фильтрация в них начинается лишь по достижении некоторого начального градиента напора J n. Уравнение (1.1) при этом принимает вид: , где J n – начальный градиент. Значения К ф и J n определяются экспериментально. Капиллярная вода удерживается в порах грунта за счет сил поверхностного натяжения. Высота капиллярного поднятия в грунтах растет с дисперсностью, составляя от 3…5 см в крупных песках до нескольких метров в глинистых грунтах. Под структурой понимаются размеры, форма, характер поверхности минеральных частиц грунта и характер связей между ними. Последние называются структурными связями и определяют прочность связных грунтов.
В пылевато-глинистых грунтах различают структурные связи: 1) Водно-коллоидные, зависящие от сил электромолекулярного взаимодействия между поверхностями твердых частиц и их водными оболочками. Эти связи пластичны и обратимы. 2) Кристаллизационные связи, возникающие вследствие кристаллизации на поверхности частиц различных соединений из поровых растров. Это связи хрупкого типа и они практически необратимы. Характеристики физических свойств грунтов И классификации по ним
В механике грунтов используются следующие основные физические характеристики, определяемые опытным путем: – плотность грунта , т/м3; – плотность частиц грунта , т/м3; – влажность , где m - масса в некотором объеме грунта V; ms и V s – масса и объем твердых частиц в некотором объеме грунта V; m wи V w – масса и объем воды в некотором объеме грунта V. По эти характеристикам рассчитывают производные показатели: - плотность сухого грунта ; ; – пористость , где – объем пор в рассматриваемом объеме грунта V; – коэффициент пористости ; (1.2) – степень влажности: , где – плотность воды. В расчетах часто используются не плотности, а удельные веса, рассчитываемые умножением плотности на ускорение свободного падения. Соответственно имеем удельный вес грунта , частиц и сухого грунта : ; ; . Например, если , то . Если принять объем грунта = 1 м3, то для него по смыслу пористости n – объем пор, а 1 – n = m – объем твердых частиц. Разрешая (1.2) относительно n, получаем: . Тогда объем твердых частиц (1.3) Грунт, залегающий ниже уровня подземных вод, испытывает взвешивающее действие воды. При этом вес твердых частиц уменьшается на вес вытесненной ими воды, т.е. на величину . Принимая m по (1.3), получаем: . Для большинства грунтов значение близко к 10 кН/м3. Для глинистых грунтов наряду с влажностью важным является понятие консистенции, характеризующее степень подвижности грунта. Консистенция может быть твердой, пластичной и текучей. Влажности, соответствующие границам между этими состояниями, называются пределами пластичности или раскатывания WP (граница между твердым и пластичным состояниями) и текучести WL (между пластичным и текучим).
Разность этих пределов называется числом пластичности Число пластичности тесно связано с содержанием в грунте глинистой фракции и поэтому используется в классификации: JP ≤ 0,07 - супесь, 0,07 < JP ≤ 0,17 - суглинок; JP > 0,17 – глина. Состояние грунта удобно характеризовать показателем текучести : . (1.4) Из (1.4) видно, что при < < 0 и консистенция твердая; при > > 1 и консистенция текучая. Для суглинков и глин изменение их свойств в интервале очень существенно и для них в указанном интервале пластичной консистенции состояния детализируются: < 0,25 – полутвердое; <0,5 – тугопластичное; <0,75 – мягкопластичное; – текучепластичное. Для супесей, у которых число пластичности мало, во всем интервале остается одно название: супесь пластичная. Для песчаных грунтов очень важно состояние по плотности сложения: плотное, средней плотности, рыхлое. В последнем состоянии грунт дает большие деформации, особенно при динамических воздействиях. Имеющиеся опытные данные по отдельным разновидностям песчаных грунтов позволяют установить состояние по плотности с помощью табл. 1.1. Более объективно плотность сложения по значению можно установить, если данный грунт подвергнуть максимально рыхлой укладке и максимально плотной, определив соответственно и . Тогда, зная для естественного сложения, можно определить относительную плотность или индекс плотности Таблица 1.1
. (1.5) При 0< – песок рыхлый; при 0,67< – плотный и при 0,33< – средней плотности. Наиболее надежно плотность устанавливается статическим или динамическим зондированием.
Для песчаных грунтов, особенно мелких и пылеватых, на строительные свойства влияет коэффициент водонасыщения . В зависимости от пески разделяются на малой степени водонасыщения (), средней степени водонасыщения 0,5< и насыщенные водой >0,8. По характеристикам физического состава и состояния можно определить условное расчетное сопротивление грунта , интегрально характеризующее строительные свойства грунта как основания. Для песчаных грунтов достаточно знать полное наименование грунта и плотность (табл. 1.2), а для пылевато-глинистых – название, значения и (табл. 1.3). Таблица 1.2
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|