II. Рассчитайте множественный коэффициент корреляции, коэффициент детерминации и коэффициенты множественной регрессии.
⇐ ПредыдущаяСтр 2 из 2 1) Выберите меню Данные, Анализ данных, Регрессия. 2) Поместите курсор в окно Входной интервал Y и обведите мышью столбец с данными, результативного признака (Валовым региональным продуктом), включая и заголовок столбца. 3) Поместите курсор в окно Входной интервал X и обведите мышью все столбцы с данными факторных признаков, включая и заголовки столбцов. 4) Активизируйте опцию Метки в первой строке. 5) Опция Уровень надёжности по умолчанию настроена на 5% ошибку. Если потребуется другая точность вычисления, следует указать её. 6) ОК 7) На новом листе отображается таблица: 8) В таблице Регрессионная статистика сгенерированы результаты по регрессионной статистике. Эти результаты соответствуют следующим статистическим показателям: • Множественный R - коэффициенту корреляции R; • R-квадрат — коэффициенту детерминации R2; • Стандартная ошибка — остаточному стандартному отклонению • Наблюдения — числу наблюдений п. 9) В таблице Дисперсионный анализ сгенерированы результаты дисперсионного анализа, которые используются для проверки значимости коэффициента детерминации R-квадрат. 10) Столбцы имеют следующую интерпретацию: 11) Столбец df — число степеней свободы. а) Для строки Регрессия число степеней свободы определяется количеством факторных признаков m в уравнении регрессии kф=m=5. б) Для строки Остаток число степеней свободы определяется числом наблюдений n и количеством переменных в уравнении регресси: kо = п - (m+1)=79 – 6=73. в) Для строки Итого число степеней свободы определяется суммой kY = kФ + kо=5+73=78. 12) Столбец SS — сумма квадратов отклонений. а) Для строки Регрессия — это сумма квадратов отклонений теоретических данных от среднего:
б) Для строки Остаток - это сумма квадратов отклонений эмпирических данных от теоретических: в) Для строки Итого — это сумма квадратов отклонений эмпирических данных от среднего: 13) Столбец MS - дисперсии, рассчитываемые по формуле: а) Для строки Регрессия - это факторная дисперсия б) Для строки Остаток - это остаточная дисперсия 14) Столбец F - расчетное значение F-критерия Фишера вычисляемое по формуле 15) Столбец Значимость F - значение уровня значимости соответствующее вычисленному значению Fp. Определяется с помощью функции FPACП (Fp; df(регрессия);df(остаток)). Поскольку Значимость F = 1,23462E-25 меньше F = 65,7003778, уравнение регрессии значимо. 16) В следующей таблице сгенерированы значения коэффициентов регрессии а i,- и их статистические оценки. Столбцы имеют следующую интерпретацию: 1. Коэффициенты — значения коэффициентов аi. 2. Стандартная ошибка — стандартные ошибки коэффициентов ai 3. t-статистика — расчетные значения t-критерия, вычисляемые по формуле 5. Р-значение - значения уровней значимости, соответствующие вычисленным значениям tp. Определяются с помощью функции =СТЬЮДРАСП(tp;n-m-1). 6. Нижние 95 % и Верхние 95 % — соответственно нижние и верхние границы доверительных интервалов для коэффициентов регрессии. Для нахождения границ доверительных интервалов с помощью функции = СТЬДРАСПОБР (tp; n – т - 1) рассчитывается критическое значение t- критерия tкp, а затем по формулам Нижние 95% = Коэффициент - Стандартная ошибка*tкр; Верхние 95% = Коэффициент + Стандартная ошибка*tкр. вычисляются соответственно нижние и верхние границы доверительных интервалов. 17) Анализ сгенерированных таблиц. а) Рассчитанные ячейки коэффициенты регрессии аi,- позволяют построить уравнение, выражающее зависимость Валового регионального продукта на душу населения Y от величины Итогов миграции населения X1, Количества правонарушений Х2, Средней начисленной заработной платы, руб. Х3, Денежных доходов на душу населения, млн.руб. Х4, Объема промышленного производства, млн. руб. Х5:
ŷ=-13774,24 - 0,51X1- 2,64Х2 + 8,01Х3+ 8,93Х4 + 4,65Х5 б) Значение множественного коэффициента детерминации R2 = 0,818182674 показывает, что 81,82 % общей вариации результативного признака объясняется вариацией факторных признаков Х1, Х2, Х3, Х4, Х5, а на 18,18 % другими неучтёнными факторами. Значит, выбранные факторы существенно влияют на прибыль предприятий, что подтверждает правильность их включения в построенную модель. Рассчитанный уровень значимости в) Следующим этапом является проверка значимости коэффициентов регрессии: а0, а1…а5. Сравнивая попарно элементы массивов Коэффициенты и Стандартная ошибка, видим, что коэффициент регрессии а1= -0,513940943 по абсолютной величине меньше, чем его стандартная ошибка = 0,625850921. Таким образом, фактор X1 следует исключить из уравнения регрессии. Стандартные ошибки остальных коэффициентов аi меньше своих стандартных ошибок. Но не все они являются значимыми, о чем можно судить по значениям показателя Р-значение, которые должны быть меньше заданного уровня значимости α = 0,05. Таким незначимым является свободный член уравнения регрессии (коэффициент в строке Y-пересечение), его значимость 0,24906735 больше 0,05 и фактор X2 (Выявлено правонарушений) 0,1036179. г) Подводя итог предварительному анализу уравнения регрессии, можно сделать вывод, что его целесообразно пересчитать без фактора X1, и X2, и свободного члена, которые не является статистически значимыми. В диалоговом окне Регрессия необходимо задать новые параметры, и следует активизировать флажок Константа- ноль (для исключения свободного члена). 18) Пересчитывая значения уравнения регрессии без свободного члена, а также фактора Х1 и Х2 получаем следующую таблицу: 19) Сравнивая попарно элементы массивов Коэффициенты и Стандартная ошибка, видим, что абсолютные значения факторов аi больше, чем их стандартные ошибки. К тому же эти коэффициенты являются значимыми, о чем можно судить по значениям показателя Р-значение, которые меньше заданного уровня значимости α = 0,05. Значения #Н/Д в строке Y-пересечение, означает отсутствие свободного члена в уравнении регрессии.
20) Таким образом, получаем новое уравнение регрессии: ŷ=7,31Х4 + 7,28Х5+ 4,19Х6 21) Экономическая сущность коэффициентов аi в полученном уравнении регрессии состоит в том, что они показывают степень влияния каждого фактора на результативный признак (Внутренний региональный продукт на душу населения). Так, увеличение Средней начисленной заработной платы на 1 рубль ведет к ведёт в увеличению Внутреннего регионального продукта на душу населения на 7,31 руб., увеличение Денежных доходов населения на 1 млн. руб. ведет к росту Внутреннего регионального продукта на душу населения на 7,28 руб., увеличение Объёма промышленного производства на 1 млн. рублей ведет к росту Внутреннего регионального продукта на душу населения на 4,19 руб.
Читайте также: I. Рассчитайте коэффициенты корреляции (тесноту связи) между отдельными факторами, используя надстройку Пакет анализа. Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|