Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Искусственные импульсные (неустановившиеся) электромагнитные поля




 

Искусственные импульсные (неустановившиеся) электромагнитные поля создаются с помощью генераторов, дающих на выходе напряжение в виде прямоугольных импульсов разной длительности и подключаемых к заземленным или незаземленным линиям. С помощью других заземленных приемных линий или незаземленных контуров изучается процесс установления и спада разностей потенциалов или на разных временах (t) после окончания питающего импульса.

При зондировании геологической среды такими импульсами в ней происходят разнообразные физические процессы. В зависимости от способа создания и измерения поля и времени, на котором проводятся измерения, а также электромагнитных свойств горных пород различают неустановившиеся поля двоякой природы: вызванной поляризации и переходных процессов или становления поля.

 

1. Поля вызванной поляризации. Поля вызванной поляризации, или вызванные потенциалы (ВП), создаются путем гальванического возбуждения постоянного тока с помощью линии АВ и измерения разности потенциалов ВП на приемных электродах МN () через 0,5-1 с после отключения тока, т.е. измеряется спад напряженности электрического поля, обусловленный разной вызванной поляризуемостью горных пород ().

 

Над однородным полупространством , где - разность потенциалов на тех же приемных электродах во время пропускания тока. Над неоднородным полупространством рассчитанная по этой формуле величина называется кажущейся поляризуемостью ().

Интенсивные поля ВП создаются над средами, содержащими рудные (электронопроводящие) минералы. При пропускании тока через такую среду в ней происходят электрохимические процессы, сходные с теми, которые наблюдаются при зарядке аккумулятора. Во время пропускания тока на поверхности рудных минералов, окруженных подземной водой, осуществляется ряд физических превращений и химических реакций, приводящих к вынужденной поляризации среды. После отключения тока в среде начинает устанавливаться равновесие, проявляющееся в медленном спаде электрического поля и наличии на приемных электродах потенциалов в течение нескольких секунд.

В средах, где породообразующие минералы не проводят электрический ток, (ионопроводящие) образование полей ВП связано с перераспределением зарядов на контакте жидкой и твердой фаз, диффузией ионов через пористые среды, адсорбцией их на глинистых частицах и другими процессами.

 

2. Поля переходных процессов или становления поля. При импульсном или ступенчатом изменении тока в питающей линии (АВ) или незаземленном контуре (петля, рамка) в момент включения или выключения тока в проводящей геологической среде индуцируются вихревые вторичные электромагнитные поля. Из теории спектров и импульсной техники известно, что при резком изменении тока в среде возникает сигнал, который можно разложить в набор гармонических колебаний широкого спектра частот. Чем острее импульс или крутизна спада сигнала, тем более высокочастотные колебания содержатся в нем. С увеличением частоты растет скин-эффект (а значит, уменьшается глубина проникновения поля) и увеличиваются вторичные вихревые индукционные поля. Поэтому в зависимости от формы питающего импульса и сопротивления среды сигналы в ней по-разному искажаются. Изучая с помощью приемной линии (М N) или незаземленного контура (петли, рамки) разности потенциалов и на разных временах (t) после окончания питающего сигнала, можно получить форму искаженного средой сигнала, т.е. изучить переходные процессы или становление (установление) поля в среде.

 

Вывод аналитических формул для связи разностей потенциалов (, ) от силы тока в питающей цепи (), сопротивления однородного полупространства (), расстояния () между центрами питающего и приемного устройств и их размеров сложен. Лишь для дальней () или ближней () зон от источника, где H - проектируемые глубины разведки, формулы для расчета имеют несложный вид:

или (24)

где и - коэффициенты установок, разные для дальней и ближней зон от источника, зависящие от типа питающей и приемной линий, их размеров и разноса (). Для неоднородной среды сопротивления, рассчитанные по этим формулам, называются кажущимися.

 

Сверхвысокочастотные поля

 

Сверхвысокочастотные электромагнитные поля с длиной волны от микрометров до метров используются для пассивной и активной радиолокации земной поверхности. Методы, основанные на их измерении, находятся на стыке электроразведки и терморазведки. При пассивной радиолокации изучаются естественно-техногенные радиотепловые (РТ) или инфракрасные (ИК) излучения земной поверхности. В разных диапазонах микрометровых длин электромагнитных волн существуют "окна прозрачности", позволяющие получать РТ или ИК - изображения земных ландшафтов при любой погоде и облачности. Интенсивность излучений зависит от солнечного и внутриземного нагрева верхних частей поверхности Земли, а также от искусcтвенных источников тепла (города, промышленные предприятия и т.п.).

При активной радиолокации (аэрокосмической или полевой) земная поверхность облучается искусственными короткими радиолокационными импульсами, изучаются времена прихода и форма отраженных как от земной поверхности, так и от границ слоев с разными электромагнитными свойствами.

 

*Скин-эффект (от англ. skin — кожа, оболочка), поверхностный эффект, затухание электромагнитных волн по мере их проникновения в глубь проводящей среды, в результате которого, например, переменный ток по сечению проводника или переменный магнитный поток по сечению магнитопровода распределяются не равномерно, а преимущественно в поверхностном слое. СЭ обусловлен тем, что при распространении электромагнитной волны в проводящей среде возникают вихревые токи, в результате чего часть электромагнитной энергии преобразуется в теплоту. Это и приводит к уменьшению напряжённостей электрического и магнитного полей и плотности тока, т. е. к затуханию волны.

 

Чем выше частота n электромагнитного поля и больше магнитная проницаемость m проводника, тем сильнее (в соответствии с уравнениями Максвелла) вихревое электрическое поле, создаваемое переменным магнитным полем, а чем больше проводимость а проводника, тем больше плотность тока и рассеиваемая в единице объёма мощность (в соответствии с законами Ома и Джоуля — Ленца). Таким образом, чем больше n, m и s, тем сильнее затухание, т. е. резче проявляется СЭ.

 

СЭ часто нежелателен. В проводах переменный ток при сильном СЭ. протекает главным образом по поверхностному слою; при этом сечение провода не используется полностью, сопротивление провода и потери мощности в нём при данном токе возрастают. В ферромагнитных пластинах или лентах магнитопроводов трансформаторов, электрических машин и других устройств переменный магнитный поток при сильном СЭ. проходит главным образом по их поверхностному слою; вследствие этого ухудшается использование сечения магнитопровода, возрастают намагничивающий ток и потери в стали. «Вредное» влияние СЭ ослабляют уменьшением толщины пластин или ленты, а при достаточно высоких частотах — применением магнитопроводов из магнитодиэлектриков.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...