III. Решение логических задач с помощью рассуждений
Не являются отрицаниями друг друга: а), в), е), ж), з), и). 5.6. Определите значения истинности высказываний:
Истинны: б), в), г), з), к), и); Ложны: а), д), е), ж). 5.7. Подставьте в приведённые ниже высказывательные формы вместо логических переменных a, b, c, d такие высказывания, чтобы полученные таким образом составные высказывания имели смысл в повседневной жизни:
Нет ответа 5.8. Формализуйте следующий вывод: "Если a и b истинны, то c — истинно. Но c — ложно: значит, a или b ложны". 5.9. Формализуйте предостережение, которое одна жительница древних Афин сделала своему сыну, собиравшемуся заняться политической деятельностью: “ Если ты будешь говорить правду, то тебя возненавидят люди. Если ты будешь лгать, то тебя возненавидят боги. Но ты должен говорить правду или лгать. Значит, тебя возненавидят люди или возненавидят боги ”.
Формализуйте также ответ сына: “ Если я буду говорить правду, то боги будут любить меня. Если я буду лгать, то люди будут любить меня. Но я должен говорить правду или лгать. Значит, меня будут любить боги или меня будут любить люди ”. 5.10. Пусть a = “ это утро ясное ”, а b = “ это утро теплое ”. Выразите следующие формулы на обычном языке:
5.11. Из двух данных высказываний a и b постройте составное высказывание, которое было бы:
а) ; б) . 5.12. Из трех данных высказываний a, b, c постройте составное высказывание, которое истинно, когда истинно какое-либо одно из данных высказываний, и только в этом случае. Ответ: . 5.13. Определите с помощью таблиц истинности, какие из следующих формул являются тождественно истинными или тождественно ложными:
Тождественно истинные: а), в), е); 5.14. Упростите следующие формулы, используя законы склеивания:
а) b•c; б) a; в) c•(a v b) v a•b (Указание: повторить четвертое логическое слагаемое 3 раза); г) a v c. 5.15. Упростите следующие формулы, используя законы поглощения:
а) a; б) a•b; в) a; г) a•b; 5.16. Постройте таблицы истинности для логических формул и упростите формулы, используя законы алгебры логики:
а) a v c; б) ; в) ; г) a v c; д) a•(c v b•d); е) ; ж) ; з) ; и) a•(b v c•d); к) . 5.17. Приведите примеры переключательных схем, содержащих хотя бы два переключателя, функция проводимости которых
5.18. Найдите функции проводимости следующих переключательных схем:
5.19. Проверьте равносильность следующих переключательных схем:
5.20. Постройте переключательные схемы с заданными функциями проводимости: 5.21. Упростите функции проводимости и постройте переключательные схемы, соответствующие упрощенным функциям:
5.22. Упростите следующие переключательные схемы:
ЛОГИЧЕСКИЕ ЗАДАЧИ 5.23. Три девочки — Роза, Маргарита и Анюта представили на конкурс цветоводов корзины выращенных ими роз, маргариток и анютиных глазок. Девочка, вырастившая маргаритки, обратила внимание Розы на то, что ни у одной из девочек имя не совпадает с названием любимых цветов. 5.24. Виновник ночного дорожно-транспортного происшествия скрылся с места аварии. 5.25. Пятеро одноклассников: Ирена, Тимур, Камилла, Эльдар и Залим стали победителями олимпиад школьников по физике, математике, информатике, литературе и географии.
Победителем какой олимпиады стал каждый из этих ребят? 5.26. Ирена любит мороженое с фруктами. В кафе был выбор из таких вариантов:
В четырёх вариантах Ирене не нравились или тип мороженого, или наполнитель, а в одном варианте ей не нравились ни мороженое, ни наполнитель. Она попросила приготовить из имеющихся продуктов порцию по своему вкусу. 5.27. На очередном этапе автогонок “Формула 1” первые четыре места заняли Шумахер, Алези, Хилл и Кулхардт. Опоздавший к месту награждения телерепортёр успел заснять пилотов, занявших второе и третье места, которые поливали друг друга шампанским. В это время Шумахер с четвёртым гонщиком пожимали друг другу руки. Далее в кадр попал мокрый Хилл, поздравляющий пилота, занявшего второе место. Напоследок оператор снял сцену, в которой Шумахер и Кулхардт пытались втащить на пьедестал почёта пилота, занявшего четвёртое место.
5.28. В некотором царстве-государстве повадился Змей Горыныч разбойничать. Послал царь четырёх богатырей погубить Змея, а награду за то обещал великую. Вернулись богатыри с победой и спрашивает их царь: “Так кто же из вас главный победитель, кому достанется царёва дочь и полцарства?” 5.29. При составлении расписания на пятницу были высказаны пожелания, чтобы информатика была первым или вторым уроком, физика — первым или третьим, история — вторым или третьим. 5.30. Обсуждая конструкцию нового трёхмоторного самолёта, трое конструкторов поочередно высказали следующие предположения:
5.31. В соревнованиях по плаванию участвовали Андрей, Виктор, Саша и Дима. Их друзья высказали предположения о возможных победителях: 5.32. Для длительной международной экспедиции на околоземной космической станции надо из восьми претендентов отобрать шесть специалистов: по аэронавтике, космонавигации, биомеханике, энергетике, медицине и астрофизике. Условия полёта не позволяют совмещать работы по разным специальностям, хотя некоторые претенденты владеют двумя специальностями. Обязанности аэронавта могут выполнять Геррети и Нам; космонавигатора — Кларк и Фриш; биомеханика — Фриш и Нам; энергетика — Депардье и Леонов; врача — Депардье и Хорхес; астрофизика — Волков и Леонов. Пример 3. В симфонический оркестр приняли на работу трёх музыкантов: Брауна, Смита и Вессона, умеющих играть на скрипке, флейте, альте, кларнете, гобое и трубе. Известно, что: 1. Смит самый высокий; 2. играющий на скрипке меньше ростом играющего на флейте; 3. играющие на скрипке и флейте и Браун любят пиццу; 4. когда между альтистом и трубачом возникает ссора, Смит мирит их; 5. Браун не умеет играть ни на трубе, ни на гобое. На каких инструментах играет каждый из музыкантов, если каждый владеет двумя инструментами? Решение. Составим таблицу и отразим в ней условия задачи, заполнив соответствующие клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание. Так как музыкантов трoе, инструментов шесть и каждый владеет только двумя инструментами, получается, что каждый музыкант играет на инструментах, которыми остальные не владеют. Из условия 4 следует, что Смит не играет ни на альте, ни на трубе, а из условий 3 и 5, что Браун не умеет играть на скрипке, флейте, трубе и гобое. Следовательно, инструменты Брауна — альт и кларнет. Занесем это в таблицу, а оставшиеся клетки столбцов "альт" и "кларнет" заполним нулями:
Из таблицы видно, что на трубе может играть только Вессон. Из условий 1 и 2 следует, что Смит не скрипач. Так как на скрипке не играет ни Браун, ни Смит, то скрипачом является Вессон. Оба инструмента, на которых играет Вессон, теперь определены, поэтому остальные клетки строки "Вессон" можно заполнить нулями:
Из таблицы видно, что играть на флейте и на гобое может только Смит.
Ответ: Браун играет на альте и кларнете, Смит — на флейте и гобое, Вессон — на скрипке и трубе. Пример 4. Три одноклассника — Влад, Тимур и Юра, встретились спустя 10 лет после окончания школы. Выяснилось, что один из них стал врачом, другой физиком, а третий юристом. Один полюбил туризм, другой бег, страсть третьего — регби. Юра сказал, что на туризм ему не хватает времени, хотя его сестра — единственный врач в семье, заядлый турист. Врач сказал, что он разделяет увлечение коллеги. Забавно, но у двоих из друзей в названиях их профессий и увлечений не встречается ни одна буква их имен. Определите, кто чем любит заниматься в свободное время и у кого какая профессия. Решение. Здесь исходные данные разбиваются на тройки (имя — профессия — увлечение). Из слов Юры ясно, что он не увлекается туризмом и он не врач. Из слов врача следует, что он турист.
Буква "а", присутствующая в слове "врач", указывает на то, что Влад тоже не врач, следовательно врач — Тимур. В его имени есть буквы "т" и "р", встречающиеся в слове "туризм", следовательно второй из друзей, в названиях профессии и увлечения которого не встречается ни одна буква его имени — Юра. Юра не юрист и не регбист, так как в его имени содержатся буквы "ю" и "р". Следовательно, окончательно имеем:
Ответ. Влад — юрист и регбист, Тимур — врач и турист, Юра — физик и бегун. Пример 5. Три дочери писательницы Дорис Кей — Джуди, Айрис и Линда, тоже очень талантливы. Они приобрели известность в разных видах искусств — пении, балете и кино. Все они живут в разных городах, поэтому Дорис часто звонит им в Париж, Рим и Чикаго. Известно, что: 1. Джуди живет не в Париже, а Линда — не в Риме; 2. парижанка не снимается в кино; 3. та, кто живет в Риме, певица; 4. Линда равнодушна к балету. Где живет Айрис, и какова ее профессия? Решение. Составим таблицу и отразим в ней условия 1 и 4, заполнив клетки цифрами 0 и 1 в зависимости от того, ложно или истинно соответствующее высказывание:
Далее рассуждаем следующим образом. Так как Линда живет не в Риме, то, согласно условию 3, она не певица. В клетку, соответствующую строке "Линда" и столбцу "Пение", ставим 0. Из таблицы сразу видно, что Линда киноактриса, а Джуди и Айрис не снимаются в кино.
Согласно условию 2, парижанка не снимается в кино, следовательно, Линда живет не в Париже. Но она живет и не в Риме. Следовательно, Линда живет в Чикаго. Так как Линда и Джуди живут не в Париже, там живет Айрис. Джуди живет в Риме и, согласно условию 3, является певицей. А так как Линда киноактриса, то Айрис балерина. В результате постепенного заполнения получаем следующую таблицу:
Ответ. Айрис балерина. Она живет в Париже. III. Решение логических задач с помощью рассуждений Этим способом обычно решают несложные логические задачи. Пример 6. Вадим, Сергей и Михаил изучают различные иностранные языки: китайский, японский и арабский. На вопрос, какой язык изучает каждый из них, один ответил: "Вадим изучает китайский, Сергей не изучает китайский, а Михаил не изучает арабский". Впоследствии выяснилось, что в этом ответе только одно утверждение верно, а два других ложны. Какой язык изучает каждый из молодых людей? Решение. Имеется три утверждения: 1. Вадим изучает китайский; 2. Сергей не изучает китайский; 3. Михаил не изучает арабский. Если верно первое утверждение, то верно и второе, так как юноши изучают разные языки. Это противоречит условию задачи, поэтому первое утверждение ложно. Если верно второе утверждение, то первое и третье должны быть ложны. При этом получается, что никто не изучает китайский. Это противоречит условию, поэтому второе утверждение тоже ложно. Остается считать верным третье утверждение, а первое и второе — ложными. Следовательно, Вадим не изучает китайский, китайский изучает Сергей. Ответ: Сергей изучает китайский язык, Михаил — японский, Вадим — арабский. Пример 7. В поездке пятеро друзей — Антон, Борис, Вадим, Дима и Гриша, знакомились с попутчицей. Они предложили ей отгадать их фамилии, причём каждый из них высказал одно истинное и одно ложное утверждение: Дима сказал: "Моя фамилия — Мишин, а фамилия Бориса — Хохлов". Антон сказал: "Мишин — это моя фамилия, а фамилия Вадима — Белкин". Борис сказал: "Фамилия Вадима — Тихонов, а моя фамилия — Мишин". Вадим сказал: "Моя фамилия — Белкин, а фамилия Гриши — Чехов". Гриша сказал: "Да, моя фамилия Чехов, а фамилия Антона — Тихонов". Какую фамилию носит каждый из друзей? Решение. Обозначим высказывательную форму "юноша по имени А носит фамилию Б" как АБ, где буквы А и Б соответствуют начальным буквам имени и фамилии. Зафиксируем высказывания каждого из друзей: 1. ДМ и БХ; 2. АМ и ВБ; 3. ВТ и БМ; 4. ВБ и ГЧ; 5. ГЧ и АТ. Допустим сначала, что истинно ДМ. Но, если истинно ДМ, то у Антона и у Бориса должны быть другие фамилии, значит АМ и БМ ложно. Но если АМ и БМ ложны, то должны быть истинны ВБ и ВТ, но ВБ и ВТ одновременно истинными быть не могут. Значит остается другой случай: истинно БХ. Этот случай приводит к цепочке умозаключений: Ответ: Борис — Хохлов, Вадим — Тихонов, Гриша — Чехов, Антон — Мишин, Дима — Белкин. Пример 8. Министры иностранных дел России, США и Китая обсудили за закрытыми дверями проекты соглашения о полном разоружении, представленные каждой из стран. Отвечая затем на вопрос журналистов: "Чей именно проект был принят?", министры дали такие ответы: Россия — "Проект не наш, проект не США"; Один из них (самый откровенный) оба раза говорил правду; второй (самый скрытный) оба раза говорил неправду, третий (осторожный) один раз сказал правду, а другой раз — неправду. Определите, представителями каких стран являются откровенный, скрытный и осторожный министры. Решение. Для удобства записи пронумеруем высказывания дипломатов: Россия — "Проект не наш" (1), "Проект не США" (2); Узнаем, кто из министров самый откровенный. Если это российский министр, то из справедливости (1) и (2) следует, что победил китайский проект. Но тогда оба утверждения министра США тоже справедливы, чего не может быть по условию. Если самый откровенный — министр США, то тогда вновь получаем, что победил китайский проект, значит оба утверждения российского министра тоже верны, чего не может быть по условию. Получается, что наиболее откровенным был китайский министр. Действительно, из того, что (5) и (6) справедливы, cледует, что победил российский проект. А тогда получается, что из двух утверждений российского министра первое ложно, а второе верно. Оба же утверждения министра США неверны. Ответ: Откровеннее был китайский министр, осторожнее — российский, скрытнее — министр США.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|