Препятствует транссудации (выходу) жидкости на поверхность альвеол из плазмы капилляров легких.
⇐ ПредыдущаяСтр 2 из 2 Толщина стенки альвеолы в местах соприкосновения (прилежания) безъядерных участков эпителиоцитов легких и эндотелия капилляров составляет около 0,5 мкм. На свободной поверхности эпителиоцитов имеются очень короткие цитоплазматические выросты, обращенные в полость альвеол, что увеличивает общую площадь соприкосновения воздуха с поверхностью эпителия. Количество альвеол в обоих легких у взрослого человека достигает от 600 до 700 млн, а общая дыхательная поверхность всех альвеол составляет около 100 кв.м. Кроме дыхательной функции легкие осуществляют регуляцию водного обмена, участвуют в процессах терморегуляции, являются депо крови (от 0,5 до 1,2 л крови). В клинической практике необходимо определять границы легких: переднюю, нижнюю и заднюю. Верхушки легких выступают выше ключицы на 2-3 см. Передняя граница (проекция переднего края) спускается от верхушек обоих легких по грудине, проходит почти параллельно на расстоянии 1-1,5 см до уровня хряща IV ребра. Здесь граница левого легкого отклоняется влево на 4-5 см, образуя сердечную вырезку. На уровне хряща VI ребра передние границы легких переходят в нижние. Нижняя граница легких соответствует по среднеключичной линии VI ребру, по средней подмышечной линии - VIII ребру, по лопаточной - X ребру, по околопозвоночной - XI ребру. Нижняя граница левого легкого расположена на 1-2 см ниже приведенной границы правого легкого. При максимальном вдохе нижний край легкого спускается на 5-7 см. Задняя граница легких проходит по околопозвоночной линии (по головкам ребер). Снаружи каждое легкое покрыто серозной оболочкой - плеврой, состоящей из двух листков: пристеночного (париетального) и легочного (висцерального). Между листками плевры имеется капиллярная щель, заполненная серозной жидкостью - плевральная полость. Эта жидкость уменьшает трение между листками плевры при дыхательных движениях. В местах перехода одной части париетальной плевры в другую образуются запасные пространства - плевральные синусы, которые заполняются легкими в момент максимального вдоха. При патологии в них может скапливаться воспалительный экссудат. Особенно велик реберно-диафрагмальный синус, расположенный в нижнем отделе плевральной полости. Правая и левая плевральные полости между собой не сообщаются. В норме в полости плевры воздух отсутствует, и давление в ней всегда отрицательное, т.е. ниже атмосферного. Во время спокойного вдоха оно на 6-8 см вод. ст. ниже атмосферного, во время спокойного выдоха - на 4-5 см вод. ст. Ввиду отрицательного давления в плевральных полостях легкие находятся в расправленном состоянии, принимая конфигурацию стенки грудной полости.
Значение отрицательного внутригрудного давления: ü способствует растяжению легочных альвеол и увеличению дыхательной поверхности легких, особенно во время вдоха; ü обеспечивает венозный возврат крови к сердцу и улучшает кровообращение в легочном круге, особенно в фазу вдоха; ü способствует лимфообращению; ü помогает продвижению пищевого комка по пищеводу. плевритом. Скопление жидкости в плевральной полости называется гидротораксом, крови - гемотораксом, гнойного экссудата - пиотораксом. Пневмоторакс - это скопление воздуха в плевральной полости. Различают следующие виды пневмоторакса: ü травматический; ü спонтанный (самопроизвольный); ü искусственный. Травматический пневмоторакс возникает при проникающем ранении грудной клетки. В зависимости от связи (сообщения) плевральной полости с атмосферным воздухом он может быть закрытым, открытым и клапанным. При закрытом пневмотораксе воздух поступает в плевральную полость однократно в момент ранения. Сообщения плевральной полости с атмосферой нет. Не опасен, так как воздух быстро рассасывается или удаляется при пункции. При открытом пневмотораксе воздух беспрепятственно поступает в плевральную полость и выходит из нее. Легкое спадается, выключается из дыхания. Холодный воздух, вызывая раздражение рецепторов плевры, значительно ухудшает состояние пострадавших. Очень опасен из-за развития тяжелого шока. При клапанном (напряженном) пневмо-тораксе воздух поступает в плевральную полость при вдохе и не выходит при выдохе. Возникает острая угроза жизни вследствие нарушения дыхания и кровообращения. Необходима срочная пункция плевральной полости толстой иглой во втором-третьем межреберье по среднеклю-чичной линии. Кроме того, следует наложить раненным в грудную клетку окклюзионную (лат. occlusus - запертый) повязку.
Спонтанный (самопроизвольный) пневмоторакс образуется при самопроизвольном разрыве больного легкого (кавернозный туберкулез, абсцесс, гангрена, рак и др.), когда воздух проникает в плевральную полость через поврежденную стенку бронха. Искусственный пневмоторакс создается преднамеренно с лечебной целью (при туберкулезе легких), для диагностики (при опухолях и инородных телах грудной полости) и для подготовки больного к операции на легком и средостении. Дыхательный цикл включает: ü Вдох ü Выдох ü Паузу Обычно вдох короче выдоха. Длительность вдоха у взрослого человека составляет от 0,9 до 4,7 с, длительность выдоха - 1,2-6 с. Дыхательная пауза различна по величине и может даже отсутствовать. Частота дыхания, определяемая по числу экскурсий грудной клетки в минуту, составляет в норме у взрослых 12-18 в минуту, у новорожденных - 60, у пятилетних детей - 25 экскурсий в минуту. В любом возрасте частота дыхания меньше частоты сердечных сокращений примерно в 4-5 раз. На частоту и глубину дыхания влияют многие факторы: физическая нагрузка, степень тренированности организма, температурный фактор, эмоциональное состояние, интенсивность обмена веществ и т.д. Чем чаще и глубже дыхание, тем больше кислорода поступает в легкие и соответственно больше углекислого газа выводится из организма.
Вдох (инспирация) совершается вследствие увеличения объема грудной клетки в трех направлениях: вертикальном, сагиттальном, фронтальном, в основном за счет сокращения наружных межреберных мышц и уплощения купола диафрагмы. При вдохе легкие пассивно следуют за увеличивающейся в размерах грудной клеткой. Дыхательная поверхность легких увеличивается, давление же в них понижается и становится на 2 мм рт.ст. ниже атмосферного. Это способствует поступлению воздуха через дыхательные пути в легкие. Быстрому выравниванию давления в легких препятствует голосовая щель, так как в этом месте воздухоносные пути сужены. Только на высоте вдоха происходит полное заполнение воздухом расширенных альвеол легких. Выдох (экспирация) осуществляется в результате расслабления наружных межреберных мышц и поднятия купола диафрагмы. При этом грудная клетка возвращается в исходное положение, и дыхательная поверхность легких уменьшается. Растянутые легкие благодаря своей эластичности уменьшаются в объеме. Давление воздуха в легких становится на 3-4 мм рт.ст. выше атмосферного, что облегчает выход воздуха из них в окружающую среду. Медленному выходу воздуха из легких способствует сужение голосовой щели. Механизм изменения объема легких при дыхании может быть продемонстрирован с помощью модели Ф.Дондерса. Она доказывает, что непосредственной причиной изменения объема легких при вдохе и выдохе является изменение размеров грудной клетки и давления в плевральной полости. В повседневной клинической практике широко используют определение четырех легочных объемов и четырех емкостей легких. Для этой цели применяют специальные приборы: спирометры, спирографы и др. На схеме приведена спирограмма, иллюстрирующая основные легочные объемы и емкости легких. Легочные объемы Легочные объемы. Дыхательный объем - количество воздуха, которое человек вдыхает и выдыхает в покое. Равен 300-700 мл (в среднем 500 мл).
Резервный объем вдоха - количество воздуха, которое человек может дополнительно вдохнуть после нормального спокойного вдоха. Составляет 1500-2000 мл (чаще 1500 мл). Резервный объем выдоха - количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха. Составляет также 1500-2000 мл (чаще 1500 мл). Остаточный объем - количество воздуха, остающееся в легких после максимального выдоха. Равен 1000-1500 мл (в среднем 1200 мл). Емкости легких. Жизненная емкость легких - наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. Равна сумме дыхательного объема, резервного объема вдоха и выдоха (от 3500 до 4700 мл). Общая емкость легких - количество воздуха, содержащееся в легких на высоте максимального вдоха. Равна сумме жизненной емкости легких и остаточного объема (4700-6000 мл). Резерв (емкость) вдоха - максимальное количество воздуха, которое можно вдохнуть после спокойного выдоха. Равен сумме дыхательного объема и резервного объема вдоха (2000 мл). Функциональная остаточная емкость - количество воздуха, остающееся в легких после спокойного выдоха. Равна сумме резервного объема выдоха и остаточного объема (2700-2900 мл). Физиологическое значение функциональной остаточной емкости состоит в том, что она способствует выравниванию колебаний содержания кислорода и углекислого газа в альвеолярном воздухе вследствие разной концентрации этих газов во вдыхаемом и выдыхаемом воздухе. Легочная вентиляция - это количество воздуха, проходящее через легкие в единицу времени. Обычно измеряют минутный объем дыхания (МОД), равный произведению дыхательного объема на частоту дыхания. В покое минутный объем дыхания равен 6-8 л/мин. При средней мышечной работе он составляет 80 л/мин, а при тяжелой мышечной работе достигает 120-150 л/мин. Не весь объем вдыхаемого воздуха участвует в вентиляции альвеол. Часть его (140-150 мл) остается в воздухоносных путях. Поэтому при спокойном дыхании в альвеолы поступает не 500 мл, а только около 350 мл. Вот почему просвет воздухоносных путей называют анатомическим мертвым пространством: воздух, находящийся в них, не участвует в газообмене. При вдохе последние порции атмосферного воздуха входят в мертвое пространство и, не изменив своего состава, покидают его при выдохе. ФИЗИОЛОГИЯ ДЫХАНИЯ. План лекции. 1. Газообмен в легких и транспорт кислорода и углекислого газа 2. Дыхательный центр, его локализация и строение. 3. Гуморальные механизмы регуляции дыхания. 4. Рефлекторные механизмы регуляции дыхания.
5. Дыхание в разных условиях. Искусственное дыхание. ЦЕЛЬ: Знать механизмы газообмена в легких и транспорт кислорода и углекислого газа кровью. Представлять механизмы гуморальной и рефлекторной регуляции дыхания, дыхания при пониженном и повышенном атмосферном давлении, искусственного дыхания. Газообмен в легких совершается между альвеолярным воздухом и кровью легочных капилляров путем диффузии в результате разницы парциального давления дыхательных газов. Парциальным (т.е. частичным) давлением называется та часть общего давления, которая приходится на долю каждого газа в газовой смеси. Эта часть зависит от процентного содержания газа в смеси. Чем оно больше, тем выше парциальное давление данного газа. Аэрогематический (воздушно-кровяной) барьер (греч.аёг, aeros — воздух + haima — кровь), через который диффундируют дыхательные газы в ходе газообмена, включает: ü тонкую пленку фосфолипида - сурфактант, выстилающую внутреннюю поверхность альвеол; ü альвеолярный эпителий - однослойный плоский; ü интерстициальную соединительную ткань, придающую эластичность альвеолам; ü эндотелий капилляра; ü слой плазмы. Суммарное диффузионное расстояние этих слоев аэрогематического барьера составляет 0,5-1 мкм. Пониженное давление кислорода (О2) в тканях организма заставляет этот газ двигаться к ним. Для углекислого газа (СО2) градиент давления направлен в обратную сторону, и СО2 переходит в окружающую среду. Эти соотношения парциального давления О2 и СО2 наглядно иллюстрируются таблицей 5.
Поскольку парциальное давление О2 в альвеолярном воздухе (106 мм рт.ст.) больше, чем в притекающей венозной крови (40 мм рт.ст.), то О2 диффундирует через альвеолы в капилляры. Напротив, напряжение СО2 в венозной крови (47 мм рт.ст.) больше, чем в альвеолярном воздухе (40 мм рт.ст.), поэтому СО2 диффундирует в альвеолы. Скорость диффузии для СО2 в 20-25 раз выше, чем для О2. Поэтому обмен СО2 происходит в легких достаточно полно, несмотря на небольшую разницу парциального давления этого газа (7 мм рт.ст.). Скорость диффузии О2 через альвеолярную мембрану составляет только 1/20-1/25 скорости диффузии СО2. Поэтому полного выравнивания давления О2 между артериальной кровью и альвеолярным воздухом не происходит, и оттекающая от легких артериальная кровь имеет напряжение О2 на 6 мм рт.ст. ниже, чем в альвеолах. Заметим при этом, что весь О2 должен пройти через стадию растворения в плазме крови. В целом напряжение дыхательных газов в оттекающей артериальной крови становится практически таким же, как их парциальное давление в альвеолах легких. Человек в покое потребляет в минуту около 250 мл кислорода и выделяет при этом в среднем 200 мл углекислого газа. В крови О2 и СО2 могут находиться в двух состояниях: в физически растворенном и в химически связанном виде. В 100 мл крови в растворенном состоянии в плазме находится 0,3 мл О2, 2,5-3 мл СО2; в химически связанном виде - 19-20 мл О2 и 48-51 мл СО2. 1 г гемоглобина связывает 1,34 мл О2. Кислородная емкость всей крови человека, содержащей примерно 750 г гемоглобина, составляет около 1000 мл. Транспорт О2 обеспечивается в основном за счет химической связи его с гемоглобином эритроцитов. Одна молекула гемоглобина присоединяет 4 молекулы О2, при этом гемоглобин превращается в оксигемоглобин, а кровь из вишневой - венозной становится ярко-алой - артериальной. Насыщение гемоглобина О2 зависит в первую очередь от парциального давления газа в атмосферном и альвеолярном воздухе и совершается не линейно, а по S-образной кривой, получившей название кривой связывания или диссоциации оксигемоглобина. При низком парциальном давлении О2 (до 20 мм рт.ст.) скорость образования оксигемоглобина невелика. Максимальное количество гемоглобина (45-80%) связывается с О2 при его напряжении 26-46 мм рт.ст. Дальнейшее повышение напряжения О2 приводит к снижению скорости образования оксигемоглобина. На диссоциацию (расщепление) оксигемоглобина и переход О2 из крови в ткани влияют 3 фактора: ü парциальное давление (напряжение) О2 в тканях (0-20 мм рт.ст.); ü кислотность среды, в частности, СО2; ü температура тела человека. Действие этих факторов проявляется и в покое, но особенно оно усиливается при физической работе. Образовавшийся в тканях углекислый газ вследствие разности напряжения диффундирует в межтканевую жидкость, плазму крови, а из нее - в эритроциты. В эритроцитах около 10% СО2 соединяется с гемоглобином, образуя карбгемоглобин. Остальная часть СО2 соединяется с водой и превращается в угольную кислоту (в эритроцитах). СО2 + Н2О *=* Н2СО3 Эта реакция ускоряется в 20000 раз особым ферментом - карбоангидразой, находящейся в эритроцитах (в тканевых капиллярах). В легочных капиллярах, где давление СО2 сравнительно низкое, карбоангидраза ускоряет в 300 раз расщепление угольной кислоты на воду и СО2, который диффундирует в альвеолярный воздух. Угольная кислота в тканевых капиллярах реагирует с ионами натрия и калия и образует бикарбонаты (NaHCO3, KHCO3). Таким образом, СО2 транспортируется к легким в физически растворенном виде и в непрочном химическом соединении в виде карбгемоглобина, угольной кислоты и бикарбонатов натрия и калия. Две трети СО находится в плазме и одна треть - в эритроцитах. Важная роль в сложны: механизмах транспорта СО2 принадлежит карбоангидразе эритроцитов. Дыхательным центром называется совокупность нейронов обеспечивающих деятельность аппарата дыхания и его приспособление изменяющимся условиям внешней и внутренней среды. Эти нейроны находятся в спинном, продолговатом мозге, варолиевом мосту, гипоталамус и коре большого мозга. Основной структурой, задающей ритм и глубин дыхания, является продолговатый мозг, который посылает импульсы мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Мост, гипоталамус и кора контролируют и корригируют автоматическую деятельность нейронов вдоха и выдоха продолговатого мозга. Функции дыхательного центра подробно исследовал в 1885 году отечественный физиолог Н.А.Миславский. В его состав входят две группы нейронов: инспираторные, обеспечивающие вдох, и экспираторные, обеспечивающие выдох. Между этими нейронами существуют реципрокные (сопряженные) соотношения. Это значит, что возбуждение нейронов вдоха сопровождается торможением нейронов выдоха и, наоборот, возбуждение нейронов выдоха сочетается с торможением нейронов вдоха. Мотонейроны, иннервирующие диафрагму, расположены в III-IV шейных сегментах, иннервирующие межреберные дыхательные мышцы, - в III-XII грудных сегментах спинного мозга. При перерезке на границе между продолговатым и спинным мозгом наблюдается полное прекращение дыхания, между мостом и продолговатым мозгом - дыхание сохраняется. Повреждение нейронов вдоха и выдоха продолговатого мозга прекращает дыхание. Дыхательный центр очень чувствителен к избытку углекислого газа, который является его главным естественным возбудителем. При этом избыток СО2 действует на дыхательные нейроны как непосредственно (через кровь и спинномозговую жидкость), так и рефлекторно (через хеморецепторы сосудистого русла и продолговатого мозга). Роль избытка СО2 на деятельность дыхательного центра была впервые доказана бельгийским физиологом Леоном Фредериком в 1890 г. в опытах с перекрестным кровообращением собак. В этих опытах прекращение искусственного дыхания у собаки-донора усиливало дыхание у реципиента, а при усилении вентиляции легких донора у собаки-реципиента наблюдалась остановка дыхания. Роль СО2 в регуляции дыхания выявляется при вдыхании газовых смесей, содержащих 5-7% СО2. При этом происходит увеличение легочной вентиляции в 6-8 раз (Дж.Холден). Вот почему при угнетении функции дыхательного центра и остановке дыхания наиболее эффективным является вдыхание не чистого О2, а карбогена, т.е. смеси 5-7% СО2 и 95-93% О2. Повышенное содержание и напряжение кислорода в среде обитания, крови и тканях организма (гипероксия) может привести к угнетению дыхательного центра. После предварительной гипервентиляции, т.е. произвольного увеличения глубины и частоты дыхания, обычная 40-секундная задержка дыхания может возрасти до 3-3,5 минут, что указывает не только на увеличение количества кислорода в легких, но и на уменьшение СО2 в крови и снижение возбуждения дыхательного центра вплоть до остановки дыхания. При мышечной работе в тканях и крови возрастает количество молочной кислоты, СО2, которые являются мощными стимуляторами дыхательного центра. Снижение напряжения О2 в артериальной крови (гипоксемия) сопровождается увеличением вентиляции легких (при подъеме на высоту, при легочной патологии).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|