Емкость в цепи синусоидального тока
Если к конденсатору емкостью C подключить синусоидальное напряжение, то в цепи протекает синусоидальный ток ; . (5.13) Из анализа выражений 5.13 следует, что ток опережает напряжение по фазе на 90o. Выражение (5.13) в комплексной форме записи имеет вид: , (5.14) где - емкостное сопротивление, фиктивная расчетная величина, имеющая размерность сопротивления. Если комплексное сопротивление индуктивности положительно . На рис. 6.7 изображена векторная диаграмма цепи с емкостью. 5.7. Последовательно соединенные реальная индуктивная Катушка с активным сопротивлением R и индуктивностью L и конденсатор емкостью С включены последовательно (рис.5.8). В схеме протекает синусоидальный ток . Определим напряжение на входе схемы. (5.15) Подставим эти формулы в уравнение (5.15). Получим: (5.16) Из выражения (5.16) видно: напряжение в активном сопротивлении совпадает по фазе с током, напряжение на индуктивности опережает по фазе ток на 90o, напряжение по емкости отстает по фазе от тока на 90o. (5.17) Рис. 5.8 Поделим левую и правую части уравнения (6.17) на √2. , (5.18) где - комплексное сопротивление цепи; При построении векторных диаграмм цепи рассмотрим три случая. 1. XL > XC, цепь носит индуктивный характер. Векторы напряжений на индуктивности и емкости направлены в противоположные стороны, частично компенсируют друг друга. Вектор напряжения на входе схемы опережает вектор тока (рис5.9).
2. Индуктивное сопротивление меньше емкостного. Вектор напряжения на входе схемы отстает от вектора тока. Цепь носит емкостный характер (рис.5.10). 3. Индуктивное и емкостное сопротивления одинаковы. Напряжения на индуктивности и емкости полностью компенсируют друг друга. Ток в цепи совпадает по фазе с входным напряжением. В электрической цепи наступает режим резонансного напряжения (рис.5.11). Ток в резонансном режиме достигает максимума, так как полное сопротивление (z) цепи имеет минимальное значение. Условие возникновения резонанса: , отсюда резонансная частота равна . Из формулы следует, что режима резонанса можно добиться следующими способами: 1. изменением частоты; 2. изменением индуктивности; 3. изменением емкости. В резонансном режиме входное напряжение равно падению напряжения в активном сопротивлении. На индуктивности и емкости схемы могут возникнуть напряжения, во много раз превышающие напряжение на входе цепи. Это объясняется тем, что каждое напряжение равно произведению тока I0 (а он наибольший), на соответствующее индуктивное или емкостное сопротивление (а они могут быть большими). . Рис. 5.9 Рис. 5.10 Рис. 5.11
5.8. Параллельно соединенные индуктивность, емкость К схеме на рис. 5.12 подключено синусоидальное напряжение . Схема состоит из параллельно включенных индуктивности, емкости и активного сопротивления. В соответствии с первым законом Кирхгофа: Рис.5.12 Подставим эти формулы в уравнение (5.19). Получим: , (5.20) где - индуктивная проводимость; Из уравнения (5.20) видно, что ток в ветви с индуктивностью отстает по фазе от напряжения на 90o, ток в ветви с активным сопротивлением совпадает по фазе с напряжением, ток в ветви с емкостью опережает по фазе напряжение на 90o.
, (5.21) где - комплексная проводимость; Построим векторные диаграммы, соответствующие комплексному уравнению (5.21). Рис. 5.13 Рис. 5.14 Рис. 5.15 В схеме на рис. 5.12 может возникнуть режим резонанса токов. Резонанс токов возникает тогда, когда индуктивная и емкостная проводимости одинаковы. При этом индуктивный и емкостный токи, направленные в противоположные стороны, полностью компенсируют друг друга. Ток в неразветвленной части схемы совпадает по фазе с напряжением. . В режиме резонанса тока полная проводимость цепи - минимальна, а полное сопротивление - максимально. Ток в неразветвленной части схемы в резонансном режиме имеет минимальное значение. В идеализированном случае R = 0, и . Ток в неразветвленной части цепи I = 0. Такая схема называется фильтр - пробкой. 5.9. Резонансный режим в цепи, состоящей Комплексная проводимость индуктивной ветви
где - активная проводимость индуктивной катушки; В режиме резонансов токов справедливо уравнение: или Из этого уравнения получим формулу для резонанса частоты (5.22) На рисунке 5.16 изображена векторная диаграмма цепи в резонансном режиме. Вектор тока I2 опережает вектор напряжения на 90o. Вектор тока I1 отстает от вектора напряжения на угол φ, где . Разложим вектор тока I1 на две взаимно перпендикулярные составляющих, одна из них, совпадающая с вектором напряжения, называется активной составляющей тока Iа1, другая - реактивной составляющей тока Iр1. Рис. 5.16 В режиме резонанса тока реактивная составляющая тока Iр1 и емкостный ток I2, направленные в противоположные стороны, полностью компенсируют друг друга, активная составляющая тока Iа1 совпадает по фазе с напряжением (рис. 5.17). Ток I в неразветвленной части схемы совпадает по фазе с напряжением.
Читайте также: Векторные диаграммы при расчете электрической цепи синусоидального тока. Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|