Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

ТЕМА 2. Строение и функции нервной ткани

М. В. ПИВОВАРЧИК

АНАТОМИЯ И ФИЗИОЛОГИЯ

ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Минск

2005


                    БИП - ИНСТИТУТ ПРАВОВЕДЕНИЯ                        

 

 

М. В. ПИВОВАРЧИК

 

 

АНАТОМИЯ И ФИЗИОЛОГИЯ

ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

 

Учебно-методическое пособие

 

 

Минск

ООО «БИП-С Плюс»

2005


 

Рекомендовано научно-методическим советом

Белорусского института правоведения

 

Рецнзенты: канд. биол. наук доцент Леднева И. В.,

канд. мед. наук, доцент Авдей Г. М.

Пивоварчик М. В.

 

Анатомия и физиология ЦНС: Учеб.-метод. пособие/ М. В. Пивоварчик. Мн.: ООО «БИП-С Плюс», 2005. – 88 с.

 

 

Пособие соответствует структуре курса «Анатомия и физиология центральной нервной системы», в нем рассматриваются основные темы, составляющие содержание курса. Подробно изложено общее строение нервной системы, спинного и головного мозга, описаны особенности строения и функционирования вегетативного и соматического отделов нервной системы человека, общие принципы ее функционирования. В конце каждой из девяти тем пособия содержатся вопросы для самоконтроля. Предназначено для студентов дневного и заочного отделений специальности психология.

 

 

© Пивоварчик М. В., 2005

Содержание

ТЕМА 1. Методы исследования нервной системы.. 4

ТЕМА 2. Строение и функции нервной ткани. 7

ТЕМА 3. Физиология синаптической передачи. 19

ТЕМА 4. Общее строение нервной системы.. 26

ТЕМА 5. Строение и функции спинного мозга. 31

ТЕМА 6. Строение и функции головного мозга. 35

Тема 7. Двигательная функция центральной нервной системы.. 57

ТЕМА 8. Вегетативная нервная система. 70

Тема 9. Ощие принципы функционирования нервной системы.. 78

ОСНОВНАЯ ЛИТЕРАТУРА.. 87

ДОПОЛНИТЕЛЬНАЯ ЛИТЕРАТУРА.. 87

 

 

..


ТЕМА 1. Методы исследования
нервной системы

Нейробиологические методы.

Метод магнитно-резонансной томографии.

Позитронно-эмиссионная томография.

Электрофизиологические методы.

Нейропсихологические методы.

Нейробиологические методы. В теоретических исследованиях физиологии нервной системы человека большую роль играет изучение центральной нервной системы животных. Эта область знаний получила название нейробиологии. Строение нервных клеток, а также протекающие в них процессы остаются неизменными как у примитивных животных, так и у человека. Исключение представляют большие полушария головного мозга. Поэтому нейробиолог всегда может изучать тот или иной вопрос физиологии головного мозга человека на более простых, дешевых и доступных объектах. Такими объектами могут быть беспозвоночные животные. В последние годы для этих целей все шире применяют прижизненные срезы головного мозга новорожденных крысят и морских свинок и даже культуру нервной ткани, выращенную в лаборатории. Такой материал может быть использован для исследования механизмов функционирования отдельных нервных клеток и их отростков. Например, у головоногих моллюсков (кальмара, каракатицы) имеются очень толстые, гигантские аксоны (диаметром 500 – 1000 мкм), по которым из головного ганглия передается возбуждение на мускулатуру мантии. Молекулярные механизмы возбуждения исследуются на этом объекте. У многих моллюсков в нервных ганглиях, заменяющих у них головной мозг, есть очень большие нейроны – диаметром до 1000 мкм. Эти нейроны используются при изучении работы ионных каналов, открытие и закрытие которых управляется химическими веществами.

Для регистрации биоэлектрической активности нейронов и их отростков применяют микроэлектродную технику, которая в зависимости от задач исследования имеет много особенностей. Обычно применяют два типа микроэлектродов – металлические и стеклянные. Для регистрации активности одиночных нейронов микроэлектрод закрепляют в специальном манипуляторе, который позволяет продвигать его в мозге животного с высокой точностью. В зависимости от задач исследования манипулятор может крепиться на черепе животного или отдельно. Характер регистрируемой биоэлектрической активности определяется диаметром кончика микроэлектрода. Например, при диаметре кончика микроэлектрода не более 5 мкм можно зарегистрировать потенциалы действия одиночных нейронов. При диаметре кончика микроэлектрода больше 10 мкм одновременно регистрируется активность десятков, а иногда и сотен нейронов.

Метод магнитно-резонансной томографии. Современные методы позволяют увидеть строение головного мозга человека, не повреждая его. Метод магнитно-резонансной томографии дает возможность на экране монитора наблюдать серию последовательных «срезов» головного мозга, не нанося ему никакого вреда. Этот метод позволяет исследовать, например, злокачественные образования головного мозга. Головной мозг облучают электромагнитным полем, применяя для этого специальный магнит. Под действием магнитного поля диполи жидкостей мозга (например, молекулы воды) принимают его направление. После снятия внешнего магнитного поля диполи возвращаются в исходное состояние, при этом возникает магнитный сигнал, который улавливается специальными датчиками. Затем это эхо обрабатывается с помощью мощного компьютера и методами компь-ютерной графики отображается на экране монитора.

Позитронно-эмиссионная томография. Еще более высоким разрешением обладает метод позитронно-эмиссионной томографии (ПЭТ). Исследование основано на введении в мозговой кровоток позитрон излучающего короткоживущего изотопа. Данные о распределении радиоактивности в мозге собираются компьютером в течение определенного времени сканирования и затем реконструируются в трехмерный образ.

Электрофизиологические методы. Еще в XVIII в. итальянский врач Луиджи Гальвани заметил, что отпрепарированные лапки лягушки сокращаются при соприкосновении с металлом. Он пришел к выводу, что мышцы и нервные клетки животных производят электричество. В России подобные исследования проводил И. М. Сеченов: ему впервые удалось зарегистрировать биоэлектрические колебания от продолговатого мозга лягушки. В начале XX в., используя уже значительно более совершенные приборы, шведский исследователь Г. Бергер зарегистрировал биоэлектрические потенциалы головного мозга человека, которые теперь называют электроэнцефалограммой (ЭЭГ). В этих исследованиях впервые был зарегистрирован основной ритм биотоков мозга человека – синусоидальные колебания с частотой 8 – 12 Гц, который получил название альфа-ритма. Современные методы клинической и экспериментальной электроэнцефалографии сделали значительный шаг вперед благодаря применению компь-ютеров. Обычно на поверхность скальпа при клиническом обследовании больного накладывают несколько десятков чашечковых электродов. Далее эти электроды соединяют с многоканальным усилителем. Современные усилители очень чувствительны и позволяют записывать электрические колебания от мозга амплитудой всего в несколько микровольт, затем компьютер обрабатывает ЭЭГ по каждому каналу.

При исследовании фоновой ЭЭГ ведущим показателем является альфа-ритм, который регистрируется преимущественно в задних отделах коры в состоянии спокойного бодрствования. При предъявлении сенсорных стимулов происходит подавление, или «блокада», альфа-ритма, продолжительность которой тем больше, чем сложнее изображение. Важным направлением в использовании ЭЭГ являются исследования пространственно-временных отношений потенциалов мозга при восприятии сенсорной информации, т. е. учет времени восприятия и его мозговой организации. Для этих целей производится синхронная многоканальная регистрация ЭЭГ в процессе восприятия. Кроме регистрации фоновой ЭЭГ для изучения работы мозга используют методы регистрации вызванных (ВП) или событийно-связанных (ССП) потенциаловмозга. Эти методы основаны на представлении о том, что вызванный или событийно-связанный, потенциал представляет собой реакцию мозга на сенсорное раздражение, по длительности сопоставимую со временем обработки стимула. Связанные с событиями потенциалы мозга представляют собой широкий класс электрофизиологических феноменов, которые специальными методами выделяются из «фоновой», или «сырой», электроэнцефалограммы. Популярность методов ВП и ССП объясняется простотой регистрации и возможностью наблюдать активность многих областей мозга в динамике в течение длительного времени при выполнении любых по сложности задач.

Нейропсихологические методы. Еще одно направление исследования головного мозга человека – это нейропсихология. Одним из основоположников этого подхода был профессор Московского университета Александр Романович Лурия. Метод представляет собой сочетание приемов психологического обследования с физиологическим исследованием человека с поврежденным головным мозгом.

 

Вопросы для самоконтроля

 

1. Какой биологичекий материал можно использовать для исследования механизмов функционирования нервных клеток?

2. Какием типы электродов используются для регистрации биоэлектрической активности нейронов?

3. Какие методы позволяют изучить особенности физиологических процессов, протекающих в мозге, не повреждая его?

4. Что представляют собой вызванные и событийно-связанные потенциалы мозга?

5. Кто является основоположником нейропсихологических методов?


ТЕМА 2. Строение и функции нервной ткани

 

Строение и классификация нейронов.

Строение и функции мембран нейронов.

Механизм возникновения мембранного потенциала.

Природа потенциала действия.

Межнейронные взаимодействия.

Строение и функции нейроглии.

Строение и классификация нейронов. Мозг состоит из миллиардов нервных клеток, или нейронов. Нейрон состоит из трех основных частей: тело нейрона (сома); дендриты – короткие отростки, которые получают сообщения от других нейронов; аксон – длинное отдельное волокно, которое передает сообщения от сомы к дендритам других нейронов или тканям тела, мышцам. Передача возбуждения от аксона одного нейрона к дендритам другого называется нейропередачей или нейротрансмиссией. Существует большое многообразие нейронов ЦНС. Чаще всего классификация нейронов осуществляется по трем признакам – морфологическим, функциональным и биохимическим.

Морфологическая классификация нейронов учитывает количество отростков у нейронов и подразделяет все нейроны на три типа – униполярные, биполярные и мультиполярные.

Униполярные нейроны имеют один отросток. В нервной системе человека и других млекопитающих нейроны этого типа встречаются редко. Биполярные нейроныимеют два отростка – аксон и дендрит, обычно отходящие от противоположных полюсов клетки. В нервной системе человека собственно биполярные нейроны встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Существует разновидность биполярных нейронов – так называемые псевдоуниполярные, или ложно-униполярные нейроны. У них оба клеточных отростка (аксон и дендрит) отходят от тела клетки в виде единого выроста, который далее Т-образно делится на дендрит и аксон. Мультиполярные нейроныимеют один аксон и много (2 и более) дендритов. Они наиболее распространены в нервной системе человека. По форме описано до 60 – 80 разновидностей веретенообразных, звездчатых, корзинчатых, грушевидных и пирамидных клеток.

С точки зрения локализации нейронов, они делятся на центральные (в спинном и   головном мозге) ипериферические ( находящиеся за пределами ЦНС, нейроны вегетативных ганглиев и метасимпатического отдела вегетативной нервной системы).

Функциональная классификация нейронов разделяет их по характеру выполняемой ими функции (в соответствии с их местом в рефлекторной дуге) на три типа: афферентные (чувствительные), эфферентные (двигательные) и ассоциативные.

1. Афферентные нейроны(синонимы – чувствительные, рецепторные, центростремительные), как правило, являются ложноуниполярными нервными клетками. Тела этих нейронов располагаются не в ЦНС, а в спинномозговых или чувствительных узлах черепномозговых нервов. Один из отростков, отходящий от тела нервной клетки, следует на периферию, к тому пли иному органу и заканчивается там сенсорным рецептором, который способен трансформировать энергию внешнего стимула (раздражения) в нервный импульс. Второй отросток направляется в ЦНС (спинной мозг) в составе задних корешков спинномозговых нервов или соответствующих чувствительных волокон черепномозговых нервов. Как правило, афферентные нейроны имеют небольшие размеры и хорошо разветвленный на периферии дендрит. Функции афферентных нейронов тесно связаны с функциями сенсорных рецепторов. Таким образом, афферентные нейроны генерируют нервные импульсы под влиянием изменений внешней или внутренней среды

Часть нейронов, принимающих участие в обработке сенсорной информации, которые можно рассматривать как афферентные нейроны высших отделов мозга, принято делить в зависимости от чувствительности к действию раздражителей на моносенсорные, бисенсорные и полисенсорные.

Моносенсорные нейронырасполагаются чаще в первичных проекционных зонах коры и реагируют только на сигналы своей сенсорности. Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя на мономодальные, бимодальные и полимодальные.

Бисенсорные нейронычаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры больших полушарий головного мозга реагируют на зрительные и слуховые раздражения. Полисенсорные нейроны– это чаще всего нейроны ассоциативных зон мозга, они способны реагировать на раздражение разных сенсорных систем.

2. Эфферентныенейроны (двигательные, моторные, секреторные, центробежные, сердечные, сосудодвигательные и пр.) предназначены для передачи информации от ЦНС на периферию, к рабочим органам. По своему строению эфферентные нейроны – это мультиполярные нейроны, аксоны которых продолжаются в виде соматических или вегетативных нервных волокон (периферических нервов) к соответствующим рабочим органам, в том числе к скелетным и гладким мышцам, а также к многочисленным железам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скоростью проведения возбуждения.

3.Вставочные нейроны(интернейроны, ассоциативные, осуществляют передачу нервного импульса афферентного (чувствительного) нейрона на эфферентный (двигательный) нейрон. Вставочные нейроны располагаются в пределах серого вещества ЦНС. По своему строению это мультиполярные нейроны. Считается, что в функциональном отношении это наиболее важные нейроны ЦНС, так как на их долю приходится 97 %, а по некоторым данным, – даже 99,98 % от общего числа нейронов ЦНС. Область влияния вставочных нейронов определяется их строением, в том числе длиной аксона и числом коллатералей. По своей функции они могут быть возбуждающими или тормозными. При этом возбуждающие нейроны могут не только передавать информацию с одного нейрона на другой, но и модифицировать передачу возбуждения, в частности, усиливать ее эффективность.

Биохимическая классификация нейронов основана на химических особенностях нейромедиаторов, используемых нейронами в синаптической передаче нервных импульсов. Выделяют много различных групп нейронов, в частности, холинергические (медиатор – ацетилхолин), адренергические (медиатор – норадреналин), серотонинергические (медиатор – серотонин), дофаминергические (медиатор – дофамин), ГАМК-ергические (медиатор – гамма-аминомасляная кислота – ГАМК), пуринергические (медиатор – АТФ и его производные), пептидергические (медиаторы – субстанция Р, энкефалины, эндорфины и другие нейропептиды). В некоторых нейронах терминали содержат одновременно два типа нейромедиатора, а также нейромодуляторы.

Другие виды классификаций нейронов. Нервные клетки разных отделов нервной системы могут быть активными вне воздействия, т. е. обладают свойством автоматии. Их называют фоновоактивными нейронами. Другие нейроны проявляют импульсную активность только в ответ на какое-либо раздражение, т. е. они не обладают фоновой активностью.

Некоторые нейроны, по причине их особой значимости в деятельности мозга, получили дополнительные названия по имени исследователя, впервые их описавшего. Среди них пирамидные клетки Беца, локализованные в новой коре большого мозга; грушевидные клетки Пуркинье, клетки Гольджи, клетки Лугано (в составе коры мозжечка); тормозные клетки Реншоу (спинной мозг) и ряд других нейронов.

Среди сенсорных нейронов выделяют особую группу, которые получили название нейронов-детекторов. Нейроны-детекторы – это высокоспециализированные нейроны коры и подкорковых образований, способные избирательно реагировать на определенный признак сенсорного сигнала, имеющий поведенческое значение. Такие клетки выделяют в сложном раздражителе его отдельные признаки, что является необходимым этапом для опознания образов. При этом информация об отдельных параметрах стимула кодируется нейроном-детектором в виде потенциалов действия.

В настоящее время нейроны-детекторы выявлены во многих сенсорных системах человека и животных. Начальные этапы их изучения относятся к 60-м годам, когда были впервые идентифицированы ориентационные и дирекционные нейроны в сетчатке лягушки, в зрительной коре кошки, а также в зрительной системе человека (за открытие феномена ориентационной избирательности нейронов зрительной коры кошки Д. Хьюбел и Т. Визел в 1981 г. были удостоены Нобелевской премии). Явление ориентационной чувствительности заключается в том, что нейрон-детектор дает максимальный по частоте и числу импульсов разряд только при определенном положении в рецептивном поле световой полоски или решетки; при другой ориентации полоски, или решетки, клетка не реагирует или отвечает слабо. Это означает, что имеет место острая настройка нейрона-детектора на потенциалы действия, отражающие соответствующий признак предмета. Дирекционные нейроны реагируют только на определенное направление движения стимула (при определенной скорости движения). Помимо ориентационных и дирекционных нейронов в зрительной системе обнаружены детекторы сложных физических явлений, встречающихся в жизни (движущаяся тень человека, циклические движения рук), детекторы приближения-удаления объектов. В новой коре, в базальных ганглиях, в таламусе обнаружены нейроны особо чувствительные к стимулам, сходным с человеческим лицом или какими-то его частями. Ответы этих нейронов регистрируются при любом расположении, размере, цвете «лицевого раздражителя». В зрительной системе выявлены нейроны с возрастающей способностью к обобщению отдельных признаков объектов, а также полимодальные нейроны, обладающие способностью реагировать на стимулы разных сенсорных модальностей (зрительно-слуховые, зрительно-соматосенсорные и т. д.).

Строение и функции мембран нейронов. Возбудимость как специализированное свойство отдельных клеток организма обусловлено наличием у них особых свойств, которые определяются строением и функцией их цитоплазматической мембраны. Избирательная проницаемость мембраны для ионов Na+, K+, Са2+ и Сl обеспечивает неравновесное распределение указанных ионов между клеткой и внеклеточной средой, что лежит в основе формирования электрического заряда клетки. Механизм активного транспорта ионов поддерживает ионную асимметрию, а система специализированных белков-рецепторов, встроенных в мембрану, позволяет клетке воспринимать электрические и химические сигналы внешней среды.

Все возбудимые клетки покрыты снаружи мембраной, которая получила название цитоплазматической, или просто плазматической, мембраны. Внутри клетки также имеются мембранные структуры, например, мембраны митохондрий, ядра клетки, эндоплазматического ретикулюма. Однако по своим свойствам они отличаются от плазматической мембраны

Плазматическая мембрана возбудимых клеток – самая толстая из клеточных мембран, ее толщина составляет 7,5-11 нм. Под электронным микроскопом она имеет вид трехслойной структуры, представленной двумя электронно-плотными слоями, которые разделяются светлым слоем. Ее молекулярное строение описывается жидкостно-мозаичной моделью, согласно которой она состоит из двойного фосфолипидного слоя, в который погружены и с которым связаны молекулы белков. Липидные молекулы имеют гидрофильную, или полярную, головку и гидрфобный (неполярный) хвост. Кроме того, в состав большинства мембран входит холестерин. В мембране гидрофобные цепи обращены внутрь бислоя, а гидрофильные головки – к наружи. Электронно-плотные слои соответствуют расположению гидрофильных головок липидов. Состав липидов каждой из половин бислоя (обращенной к внеклеточной среде и внутрь цитоплазмы, соответственно) – неидентичен. Липиды обеспечивают основные физико-химические свойства мембран, в том числе их текучесть при температуре тела.

Мембранные белки составляют более 50 % массы мембраны и удерживаются в липидном бислое за счет гидрофобных взаимодействий с молекулами липидов. По своему расположению относительно липидного бислоя мембранные белки разделяются на две основные группы – интегральные и периферические. Периферические белки находятся на поверхности мембраны и непрочно связаны с ней. Интегральные белки либо полностью погружены в липидный бислой, либо частично. Кроме того, многие белки пронизывают всю мембрану. Часть мембранных белков связана с молекулами олигосахаридов, которые обеспечивают формирование гликокаликса (дословно – сладкая оболочка), последний служит своеобразным фильтром для поверхностной мембраны, а также для рецепции химических сигналов.

С функциональной точки зрения мембранные белки выполняют основные функции характерные для поверхностной мембраны. Часть белков представляет собой ионные каналы, которые обеспечивают пассивный транспорт ионов по градиенту концентрации из наружной среды в клетку или наоборот. Часть белков выполняет функцию активного транспорта ионов (ионные насосы, например, Na-K- насос). Таким образом, белки выступают в роли пассивных или активных переносчиков ионов и других гидрофильных веществ, транспорт которых через гидрофобные участки мембран запрещен. Часть мембранных белков выполняет функцию рецептора, т. е. специализированной структуры, предназначенной для узнавания определенных молекул и передачи сообщения об этом событии внутрь клетки. Часть мембранных белков выступает в роли ферментов, осуществляющих перенос определенных групп от одних молекул к другим. Все белки мембраны синтезируются в эндоплазматическом ретикулюме, а затем направляются в аппарат Гольджи, откуда они распределяются на соответствующие участки мембраны. Контроль за синтезом соответствующих белков осуществляется с участием генов, находящихся в ядре клетки.

Плазматическая мембрана играет исключительно важную роль в жизнедеятельности клеток, особенно, возбудимых (нейронов, мышечных волокон и др. клеток). Основная функция плазматической мембраны заключается в создании необходимой для деятельности клетки микросреды. Нередко эту функцию называют барьерно-транспортной, так как именно избирательная проницаемость и избирательный транспорт обеспечивают создание такой среды. Благодаря этой функции возбудимые клетки формируют мембранный потенциал, кратковременное изменение которого представляет основной признак возбуждения – потенциал действия. Кроме того, важнейшей функцией плазматической мембраны является рецепция внешних сигналов, в том числе поступающих от других клеток через специальные устройства (синапсы) или через кровь, лимфу либо ликвор. В роли таких сигналов выступают молекулы медиаторов, гормонов, биологически активных веществ. Таким образом, с участием мембраны осуществляется межклеточное взаимодействие в организме. Наряду со способностью возбудимых клеток формировать мембранный потенциал и потенциал действия, способность к межклеточным взаимодействиям обеспечивает все многообразие видов деятельности ЦНС.

Мембранный транспорт веществ (переход вещества из внеклеточной среды во внутриклеточную либо наоборот) является еще одной важной функцией мембраны. Любой вид транспорта определяется свойствами переносимого вещества – его способностью растворяться в воде, его размерами, химическими свойствами, а также градиентом (разницей) концентрации между наружной и внутренней поверхностью плазматической мембраны. Гидрофобные вещества хорошо проходимы через плазматические мембраны. Поэтому их транспорт определяется преимущественно наличием и направленностью градиента концентрации – вещество движется согласно законам термодинамики из области его высокой концентрации в область, где концентрация этого вещества ниже. Гидрофильные вещества не могут свободно проходить через плазматические мембраны, даже если они имеют небольшие размеры. Для их транспорта необходимы либо специальные частицы – транспортеры, либо специальные механизмы, в основе которых лежит изменение формы клетки. Если перенос вещества происходит с участием транспортной частицы (переносчика), то в этом случае возможны два варианта. Первый вариант – перенос по градиенту концентрации. Такой вид транспорта не требует для своей реализации в данный момент времени затраты энергии (она затрачивается ранее, при создании такого градиента); поэтому его условно называют пассивным транспортом. Второй вариант – перенос вещества против градиента его концентрации. В этом случае необходима затрата свободной энергии (используются энергия, которая освобождается при гидролизе АТФ, т. е. в результате диссоциации этой молекулы на АДФ, и неорганический фосфат). Такой вид транспорта получил название активный транспорт.

Таким образом, можно говорить о наличии внутри плазматической мембраны двух типов переносчиков – пассивных и активных. Процесс транспорта веществ через плазматическую мембрану может регулироваться, поэтому проницаемость для конкретного вещества – величина, изменяемая во времени. Особенно этот принцип важен в отношении ионов натрия, калия, кальция и хлора – в возбудимых клетках имеются специальные механизмы регуляции проницаемости мембраны для указанных ионов, позволяющих менять ее в широких диапазонах, в том числе до полного прекращения транспорта иона. При этом существуют два основных механизма такой регуляции – за счет изменения уровня мембранного потенциала (потенциалзависимый механизм) или за счет активации специфических клеточных рецепторов (рецепторуправляемый механизм).

Различают прямой и опосредованный транспорт. Прямой транспорт осуществляется без участия переносчиков и без затраты энергии. Он идет путем диффузии или фильтрации, т. е. по типу пассивного транспорта. Примером такого вида транспорта является перенос кислорода как жирорастворимого вещества. Опосредованный транспорт во всех случаях совершается с участием переносчика. При этом в одних случаях этот вид транспорта идет без затраты энергии (облегченная диффузия), а в других – с затратой энергии (активный транспорт).

Пассивный транспорт. Различают два его вида – простую диффузию и облегченную диффузию. Механизмом простой диффузии осуществляется перенос мелких жирорастворимых молекул (О2, СО2, и др.). Облеченная диффузия осуществляется через специфические каналы (в том числе специфические ионные каналы) или с участием специфических белков-переносчиков. В том и в другом случае эти структуры являются интегральными мембранными белками, а сам перенос вещества идет без затраты энергии – за счет химического или электрохимического градиента. С помощью белков-переносчиков возбудимые клетки (как и другие клетки) получают из внеклеточной среды. Направленность потока ионов определяется химическим и электрохимическим градиентом. В частности, известно, что в цитоплазме возбудимых клеток концентрация ионов Na+ составляет 14 мМ, а во внеклеточной среде – 140 мМ. Поэтому пассивный поток ионов Na+  по натриевым каналам направлен из внеклеточной среды в цитоплазму. Аналогичная ситуация для потока ионов Са++, так как во внеклеточной среде их концентрация намного больше, чем в цитоплазме. Поток ионов К+ по калиевым каналам направлен, наоборот, из клетки в среду, так как концентрация этих ионов в цитоплазме намного больше, чем во внеклеточной среде (150 мМ против 4 – 5 мМ). Натриевые каналы в условиях покоя (в частности, при мембранном потенциале, равном – 80 мВ) закрыты, но при снижении мембранного потенциала (например, с +80 мВ до +60 мВ) открываются, в результате чего интенсивность натриевого потока, входящего в клетку, возрастает. Однако спустя определенное время (например, 1 – 2 мс, как это наблюдается в нейроне) происходит инактивация натриевых каналов. Следствием этого процесса является снижение (почти до нуля) входящего в клетку потока ионов натрия. Натриевые каналы играют исключительно важную роль в деятельности нейронов, так как обеспечивают начальный компонент потенциала действия, т. е. его фазу деполяризации.

Активный транспорт  транспорт, который осуществляется за счет работы так называемых насосов, которые работают за счет энергии гидролиза АТФ.

Na, К-насос, или Na, К-АТФаза, совершает активный перенос сразу двух ионов – ионов Na+, которые переносятся против градиента их концентрации из цитоплазмы в окружающую среду, и ионов К+, которые, наоборот, переносятся из наружной среды в клетку, причем обычно Na, К-насос работает в электрогенном режиме – на три выводимых из клетки иона Na+ внутрь клетки вводится два иона К+.

Кроме того, как вариант активного транспорта, т. е. транспорта с затратой энергии, различают транспорт с изменением архитектуры мембраны – экзоцитоз и эндоцитоз. В этом случае большая молекула, например белковая молекула, или группа молекул выбрасывается за пределы клетки (экзоцитоз), либо поглощение этого вещества из среды внутрь клетки (эндоцитоз).

Механизм возникновения мембранного потенциала. Мембранный потенциал (МП) представляет собой разность потенциалов между наружной и внутренней поверхностями мембраны возбудимой клетки в условиях ее покоя. В среднем у клеток возбудимых тканей МП достигает 50 – 80 мВ, со знаком минус внутри клетки. Исследование природы мембранного потенциала показало, что во всех возбудимых клетках (нейроны, мышечные волокна, миокардиоциты, гладкомышечные клетки) его наличие обусловлено преимущественно ионами К+. Как известно, в возбудимых клетках за счет работы Na-K-насоса концентрация ионов К+ в цитоплазме в условиях покоя поддерживается на уровне 150 мМ, в то время как во внеклеточной среде концентрация этого иона обычно не превышает 4 – 5 мМ. Это означает, что внутриклеточная концентрация ионов К+ в 30 – 37 раз выше, чем внеклеточная. Поэтому по градиенту концентрации ионы К+ стремятся выйти из клетки во внеклеточную среду. В условиях покоя, действительно, существует выходящий из клетки поток ионов К+, при этом диффузия осуществляется по калиевым каналам, большая часть которых открыта. В результате того, что мембрана возбудимых клеток непроницаема для внутриклеточных анионов (глутамата, аспартата, органических фосфатов), на внутренней поверхности мембраны клетки вследствие выхода ионов К+ образуется избыток отрицательно заряженных частиц, а на наружной – избыток положительно заряженных частиц. Возникает разность потенциалов, т. е. мембранный потенциал, который препятствует чрезмерному выходу ионов К+ из клетки. При некотором значении МП наступает равновесие между выходом ионов К+ по концентрационному градиенту и входом (возвратом) этих ионов по возникшему электрическому градиенту. Мембранный потенциал, при котором достигается это равновесие, получил название равновесного потенциала. Помимо ионов К+ определенный вклад в создание мембранного потенциала вносят ионы Na+ и Сl. В частности, известно, что концентрация ионов Na+ во внеклеточной среде в 10 раз больше, чем внутри клетки (140 мМ против 14 мМ). Поэтому ионы Na+ в условиях покоя стремятся войти в клетку. Однако основная часть натриевых каналов в условиях покоя закрыта (относительная проницаемость для ионов Na+, судя по экспериментальным данным, полученным на гигантском аксоне кальмара, в 25 раз ниже, чем для ионов К+). Поэтому в клетку входит лишь небольшой поток ионов Na+. Но и этого достаточно, чтобы хотя бы частично компенсировать избыток анионов внутри клетки. Концентрация ионов Сl- во внеклеточной среде также выше, чем внутри клетки (125 мМ против 9 мМ), и поэтому эти анионы также стремятся войти в клетку, очевидно, по хлорным каналам.

Таким образом, основными ионами, определяющими величину МП, являются ионы К+, покидающие клетку. Ионы Na+, входящие в клетку в небольших количествах, частично уменьшают величину МП, а ионы Сl-, также входящие в клетку в условиях покоя, в определенной степени компенсируют это влияние ионов Na+. Кстати, в многочисленных экспериментах с различными возбудимыми клетками установлено, что чем выше проницаемость клеточной мембраны для ионов Na+ в условиях покоя, тем ниже величина МП. Для того чтобы МП поддерживался на постоянном уровне, необходимо поддержание ионной асимметрии. Для этого, в частности, служат ионные насосы (Na-K-насос, а также, вероятно, Сl-насос) которые восстанавливают ионную асимметрию, особенно после акта возбуждения. Так как этот вид транспорта ионов активный, т. е. требующий затраты энергии, то для поддержания мембранного потенциала клетки необходимо постоянное наличие АТФ.

Природа потенциала действия. Потенциал действия (ПД) представляет собой кратковременное изменение разности потенциалов между наружной и внутренней поверхностями мембраны (или между двумя точками ткани), которое возникает в момент возбуждения. При регистрации потенциала действия нейронов с помощью микроэлектродной тех наблюдается типичный пикообразный потенциал. В упрощенном виде при возникновении ПД можно выделить следующие фазы: начальный этап деполяризации, затем быстрое снижение мембранного потенциала до нуля и перезарядка мембраны, далее происходит восстановление исходного уровня мембранного потенциала (реполяризация). Основную роль в этих процессах играют ионы Na+, деполяризация вначале обусловлена незначительным повышением проницаемости мембраны для ионов Na+. Но чем выше степень деполяризации, тем выше становится проницаемость натриевых каналов, тем больше ионов натрия входит в клетку и тем выше степень деполяризации. В этот период происходит не только снижение разности потенциалов до нуля, но и изменение поляризованности мембраны – на высоте пика ПД внутренняя поверхность мембраны заряжена положительно по отношению к наружной. Процессы реполяризации связаны с увеличением выхода из клетки ионов К+ через открывшиеся каналы. В целом, необходимо отметить, что генерация потенциала действия – это сложный п

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...