Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Белый чугун. В белом чугуне весь углерод находится в виде цементита. Структура такого чугуна — перлит, ледебурит и цементит. Такое название этот чугун получил из-за светлого цвета излома




Серый чугун. Серый чугун это сплав железа, кремния (от 1,2- 3,5 %) и углерода, содержащий также постоянные примеси Mn, P, S. В структуре таких чугунов большая часть или весь углерод находится в виде графита пластинчатой формы. Излом такого чугуна из-за наличия графита имеет серый цвет.

Ковкий чугун Ковкий чугун получают длительным отжигом белого чугуна, в результате которого образуется графит хлопьевидной формы. Металлическая основа такого чугуна: феррит и реже перлит. Ковкий чугун получил свое название из-за повышенной пластичности и вязкости (хотя обработке давлением не подвергается). Ковкий чугун обладает повышенной прочностью при растяжении и высоким сопротивлением удару. Из ковкого чугуна изготовляют детали сложной формы: картеры заднего моста автомобилей, тормозные колодки, тройники, угольники и т. д.

Маркируется ковкий чугун двумя буквами и двумя числами, например КЧ 370-12. Буквы КЧ означают ковкий чугун, первое число—предел прочности (в МПа) на разрыв, второе число — относительное удлинение (в процентах), характеризующее пластичность чугуна.

Высокопрочный чугун. Высокопрочный чугун имеет в своей структуре шаровидный графит, который образуется в процессе кристаллизации. Шаровидный графит ослабляет металлическую основу не так сильно как пластинчатый, и не является концентратором напряжений

Половинчатый чугун.В половинчатом чугуне часть углерода (более 0,8 %) содержится в виде цементита. Структурные составляющие такого чугуна — перлит, ледебурит и пластинчатый графит.

76. Виды термической обработки сталей.

Шире других видов термической обработки применяют отжиг, нормализацию, закалку и отпуск стали.

Отжиг стали производят в тех случаях, когда необходимо уменьшить твердость, повысить пластичность и вязкость, ликвидировать последствия перегрева, получить равновесное состояние, улучшить обрабатываемость при резании.

полный отжиг стали производят путем нагрева ее до температуры выше верхних критических точек на 20...50 СС (Лс3 + 20...50°С), т.е. выше линии GS (см. 9.12), выдержки при такой температуре до полного прогрева слитка с последующим очень медленным охлаждением (вместе с охлаждаемой печью, под слоем песка, золы, шлака и т. п.).

Закалка стали заключается в нагреве ее до температуры образования аустенита, выдержке при этой температуре и последующем быстром охлаждении. В зависимости от скорости охлаждения сталь получают в состоянии мартенсита, троостита или сорбита закалки. При закалке обычной углеродистой стали в слабых водных растворах — электролитах или в холодной воде сталь получает структуру мартенсита; при закалке в горячей воде или минеральном масле — структуру троостита и в расплавленном свинце — структуру сорбита. Стали с содержанием углерода менее 0,2 % практически не воспринимают закалку.

Метод термомеханической обработки (ТМО), получивший за последние годы большое развитие, проводят в две стадии: 1) горячая или теплая деформация в области существования высокотемпературной фазы — аусте-нита (выше критических точек Лез, либо ниже критических точек Ас\); 2) последующее регламентированное охлаждение, в процессе которого деформированный ау-стенит претерпевает полиморфное превращение. Чаще всего применяют закалку на мартенсит. Высокие механические свойства после ТМО обусловливаются получением мелкодисперсной структуры с повышенной плотностью.

Отпуском называют термическую обработку, при которой закаленную сталь нагревают до температуры ниже критических точек Ас\ (723 °С), выдерживают при этой температуре, а затем охлаждают. При отпуске стали мартенсит закалки и остаточный аустенит распадаются, образуя более устойчивые структуры (троостит, сорбит). Цель отпуска — уменьшение внутренних напряжений, снижение твердости и хрупкости, повышение пластичности.

77. Виды химико-термической обработки стали.

Химико-термическая обработка стали заключается в изменении химического состава поверхностного слоя стального изделия путем насыщения его каким-либо другим веществом (углеродом, азотом, цианом, хромом) с целью повышения твердости, износостойкости или коррозионной стойкости поверхности и сохранения при этом высоких механических качеств самого изделия. Видами химико-термической обработки стали являются цементация, азотирование, цианирование и хромирование.

Цементацию стали осуществляют насыщением углеродом поверхностного слоя стального изделия при температуре среды 880...950°С, содержащей углерод.

Азотирование — насыщение азотом поверхностного слоя стального изделия при нагревании до 500...700°С в атмосфере аммиака, при этом повышаются коррозионная стойкость, твердость, износоустойчивость и предел усталости стали. Азотированию подвергают легированные стали, содержащие в качестве легирующего вещества алюминий и прошедшие предварительную термическую и механическую обработку, кроме окончательного шлифования. Глубина азотированного слоя 0,01... 1,0 мм.

Хромирование — насыщение поверхностного слоя хромом. Повышение коррозионной стойкости стали при действии пресной и морской воды, азотной кислоты, окислительной среды при высокой температуре (окалиностойкость) достигается хромированием. Твердость хромированного слоя низколегированной стали составляет НВ 250...300, а высокоуглеродистой — НВ 1200... 1300.

78. Кривая намагничивания и перемагничивания.

Основной характеристикой процесса намагничивания является кривая намагничивания – зависимость магнитной индукции B в ферромагнетики от напряженности магнитного поля H (рис. 8.1).

Рис. 8.1

 

В области относительно малых значений H намагничивание осуществляется за счет роста тех доменов, у которых вектор спонтанной намагниченности имеет ориентацию, близкую к ориентации вектора . Этот этап намагничивания называется процессом смещения границ. Различают обратимый процесс смещения границ, когда при выключении внешнего магнитного поля домены возвращаются к исходным размерам (при малых значениях H), и необратимый процесс смещения границ, когда при выключении внешнего поля домены уже не принимаю начальные размеры (при достаточно больших значениях H).

79. Электротехнические стали.

Электротехническая сталь — тонколистовая сталь, используемая при изготовлении магнитопроводов электротехнического оборудования — электромагнитов, трансформаторов, генераторов, электродвигателей, дросселей, реле, стабилизаторов и так далее.

Свойства

В зависимости от требуемых свойств, электротехническая сталь содержит различное количество кремния. В зависимости от технологии производства электротехнические стали разделяют на холоднокатаные (изотропные или анизотропные; количество кремния до 3,3%) и горячекатаные (изотропные; количество кремния до 4,5%). Нередко в качестве легирующей добавки в электротехнической стали может содержаться алюминий (до 0,5%). Иногда электротехнические стали условно разделяют на динамную (0,8—2,5% кремния) и трансформаторную (3—4,5% кремния).

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...