Глава 6. Мнимое время. Нуль, иррациональные и мнимые числа
Глава 6 Мнимое время Пространство и время едины…
Кроме известных человеку, есть еще пятое измерение. Род Серлинг, «Сумеречная зона» [69]
После того как Эйнштейн опубликовал свои первые статьи по теории относительности, его бывший учитель математики Герман Минковский[70] был весьма удивлен. Он не запомнил Эйнштейна как особо выдающегося студента. (Неправильно говорить, что юный Альберт оказался слаб в математике: просто курс Минковского был действительно очень продвинутый. ) Однако работы Эйнштейна по релятивизму были революционны, поражали воображение и опирались на твердое научное основание. Они изменили жизнь и учителя. Вскоре сам Минковский сделал огромный рывок вперед, оказав колоссальное обратное влияние на Эйнштейна. Неизбежным следствием этого влияния стало создание уравнений, на которых сегодня зиждется вся наука о Вселенной: общей теории относительности. Уравнения Эйнштейна связали пространство и время. Он доказал математически, что время события зависит не только от времени в другой системе отсчета, но и от его расположения в пространстве. Минковский взял уравнения Эйнштейна и сделал с ними то, что могло показаться неким трюком. На самом деле он основывался на глубокой идее. Минковский сформулировал теорию относительности особым образом, в котором пространство и время представляли собой координаты в пространственно‑ временном континууме. Чтобы добиться этого, ему пришлось сделать временную координату мнимой. Мнимое время? Под этим я подразумеваю, что событие определяется четырьмя числами: x, y, z и it, где i = √ − 1 (мнимая единица), а t – время. Зачем нужно было делать такую странную вещь? Логика Минковского состояла в том, что это превращало комбинацию координат в математический объект, который мы называем вектором и который обладает очень полезными свойствами.
Можно решить, что превращение времени в мнимое ради математического выигрыша означает выплескивание ребенка из купели вместе с водой. Мы знаем, что время реально (вещественно). Рассматривать его как мнимое кажется сумасшествием. Но для физиков и математиков мнимые числа совсем не воображаемые. Придется посмотреть понятию мнимости прямо в глаза, поскольку оно встречается не только в релятивизме, но и в квантовой физике, так как квантовая волна оказывается комбинацией вещественных и мнимых значений, то есть комплексным числом. Для состояний с хорошо определяемой энергией время в квантовой физике объединено с √ − 1 в показателе экспоненты, что дает график временной зависимости. Так что давайте поговорим о мнимых числах.
Нуль, иррациональные и мнимые числа
Чтобы понять, что такое мнимое время, необходимо осознавать, что термин мнимый используется в физике и математике в несколько ином смысле, чем в литературе и психологии. Как это ни парадоксально, но слово мнимый в математике просто отражает нехватку у математиков воображения. Как и физики, они любят обычными словами называть необычные явления. У них не хватает фантазии придумать новый термин, поэтому они «крадут» общеупотребимое слово и придают ему некое новое значение. Так поступают многие ученые. Прошу извинить меня за тирады по поводу так называемого научного языка. Я спрашиваю, по какому праву ученый позволяет себе утверждать, что американский буйвол [71] – это совсем не буйвол? Или что паук не насекомое? Или что Плутон не планета? Ученые пытаются «похитить» эти слова, а затем диктовать нам, когда можно ими пользоваться, а когда нет. Но не они их придумывали, поэтому и не имеют права изменять границы их значений. По моему мнению, американский буйвол только и есть, что американский буйвол. В XVII веке не только пауки, но и черви, и улитки назывались насекомыми. От одного математика я услышал, что на шнурках своих ботинок я завязываю не узел, так как все, что может быть развязано, не должно называться узлом.
Никто не давал ученым права изменять значение общепринятых слов. Одно из замечательных следствий этой логики – Плутон все‑ таки планета! Однажды я предложил студентам своего курса проголосовать за это, и с результатом 451: 0 победили те, кто считает Плутон планетой. Поскольку участников того голосования было больше, чем на заседании Международного астрономического союза, (МАС)[72], вынесшем противоположное решение[73], думаю, что верх все же одержали мои студенты. Никто не давал МАС полномочий решать этот вопрос. (А я, между прочим, член МАС. ) Плутон – по‑ прежнему планета. Конец моей тираде. Вернемся к мнимым числам. В моей преподавательской практике я видел немало хороших и умных студентов, терпение которых лопалось, когда начиналось изучение мнимых чисел. Как можно работать с тем, чего нет? При встрече с мнимыми числами практически у всех возникает ощущение, что такая математика становится слишком абстрактной, чересчур оторванной от реальности, чтобы ее можно было понять. В духе отрицания пресловутого «научного языка» я объявляю, что мнимые числа совсем не воображаемые. Квадратный корень из − 1 (√ − 1) в действительности существует. Чтобы понять, каким образом, давайте посмотрим на другие абстрактные числа. Существует ли 0? Древние римляне говорили, что нет. Они полагали самоочевидным, что ничто не может существовать. Как итог – в римских цифрах нет нуля. Римлянин, записывающий вычитание IV из IV, в качестве результата просто оставлял пустое место. Но как пустое место в качестве результата отличить от нерешенной задачи? Идея использования символа, обозначающего ничто, была бы для римлян слишком большим шагом вперед, который они так и не сделали (если только вы не считаете Птолемея римлянином). Предполагаю, что в то время некоторые математики (или, может быть, счетоводы) настаивали на введении такого символа: просто он был бы полезен. Но концептуально римлянам трудно было принять обозначение символом того, что было ничем. Нуль (0) ведь в реальности не существует, не так ли? Ведь он есть только в нашем воображении, правильно? Он ведь мнимый, верно?
Древние греки были на удивление более продвинутыми в математике. Архимед вывел формулу объема шара: 4/3π R ³. Попробуйте вывести ее самостоятельно без дифференциальных вычислений. И все же даже у греков не было знака для обозначения нуля, по крайней мере до 130 года н. э., когда Птолемей в Александрии ввел его в ограниченное употребление. Греки, как и римляне, оставляли на месте нуля пустое место. Когда моей дочери было пять лет, мы нередко развлекались незатейливой игрой. Я спрашивал: «Кто на заднем сиденье машины? » Она отвечала: «Никто». – «У этого “никого” окно открыто? » – «Нет». – «Но у меня‑ то окно открыто. Как же ты можешь говорить, что окно не открыто ни у кого? » «Папа! » – возмущалась дочь. И несмотря на свое расстройство, продолжала игру в слова. Это занятие ей нравилось, но она тогда еще не понимала, что я готовлю ее к абстрактной математике. А как насчет отрицательных чисел? Вспоминаю учительницу математики в седьмом классе (она была самым плохим педагогом за всю мою жизнь), которая говорила, что отрицательных чисел не существует. «Просто притворитесь, что они есть», – твердила она. К счастью, я был довольно развитым учеником и поэтому решил, что она ошибается. Помню, как убеждал себя: «Отрицательное число похоже на то, что ты кому‑ то должен». Однако, полагаю, ее совет по поводу отношения к отрицательным числам знаменовал собой конец математики для половины класса. Многие мои соученики никогда больше не испытывали комфорта, производя операции с числами, которых не было. Для меня отрицательные числа существовали всегда. В седьмом классе я уже сделал для себя вывод: числа не вещи, а мысленные категории, полезные при вычислениях. Существует ли какое‑ либо число в реальности? Или это просто абстракции, которые мы используем, чтобы правильно организовывать свои мысли? Вообще‑ то это философский вопрос, имеющий отношение к сути существования: им переполнены книги и статьи. (На моем рабочем столе оказалось издание под названием Does Santa Exist? [74] Эта серьезная книга раскрывает смысл слова «существовать». ) Мы вернемся к этому при обсуждении некоторых новых идей в физике, которые могут или не могут существовать. Одной из них будет квантовая волновая функция. Другой – радиус Шварцшильда для черных дыр.
Древние греки верили (именно верили), что существуют только целые числа. Они считали эту истину очевидной. Греки думали, что все остальные числа могут быть записаны как дроби, или отношения целых чисел, например 22/7. Пифагора считают открывшим такие отношения в музыке: это тоны. «Октава» означает, что соотношение частот между соседними звуками составляет 1: 2 (на длине вибрирующей струны). Этот музыкальный интервал называется октавой[75] потому, что включает в себя восемь нот. Музыкальный интервал квинта[76] шириной в 5 нот имеет соотношение частот рядом расположенных звуков, равное 3: 2. Кварта[77], музыкальный интервал в 4 ступени, имеет соотношение 4: 3. И вот, примерно в 600 году до н. э., произошло поразительное событие – не только в истории математики, но вообще в сфере понимания человечеством окружающего мира. Пифагорейцы открыли, что √ 2 не может быть записан как отношение целых чисел. В результате они назвали это число иррациональным. Не рациональным. Сумасшествие. Все это может показаться загадочной стороной математики, но подумайте об этом хорошенько. Как вообще можно быть уверенным, что ваше утверждение истинно? В конце концов, нет ничего сверхъестественного в √ 2: это всего лишь длина гипотенузы в прямоугольном треугольнике с длинами катетов, равными 1. Из физических измерений этой фигуры нельзя заключить, что число будет иррациональным. Вы никогда не перепробуете всех возможных комбинаций целых чисел. Предположим, я скажу, что √ 2 равен результату деления числа 1 607 521 на 1 136 689. На самом деле это не так, но очень близко. Попробуйте сами: произведите эту операцию на калькуляторе, а потом возведите результат в квадрат. Или используйте таблицу. Открыв иррациональный характер √ 2, пифагорейцы сделали важный шаг к признанию реальности ненаучного знания. Я привожу доказательство иррациональности √ 2 в Приложении 3. Это не очень трудно – можете убедиться сами. Позже мы поговорим подробнее о квадратном корне из 2, а сейчас давайте продолжим наше исследование значения термина мнимый.
Квадратный корень из 2 может быть представлен по крайней мере графически. Как я уже говорил, это длина гипотенузы в прямоугольном треугольнике с катетами, равными 1. Однако соотношение между длиной окружности и ее диаметром, которое мы называем в честь Пифагора числом π, нельзя представить графически. Получается, оно еще более странное, чем √ 2. Мы называем его трансцендентным, используя то же слово, которым обозначаем трансцендентальные медитации[78]. Одним из удивительных фактов, касающихся иррациональности √ 2 (показывающих, насколько это действительно экстраординарное явление), можно считать то, что оно было открыто всего один раз за историю цивилизации. Все другие утверждения по поводу этого числа в конечном счете возвращаются к работам древнегреческих математиков. А что тогда можно сказать о √ − 1? Это не целое число, не рациональное и не иррациональное. Оно также не трансцендентное. Означает ли это, что его не существует? Нет, определенным образом оно существует, но только в такой степени, в которой реально существуют и другие числа. Они служат инструментами, которые мы используем для вычислений. Если такой инструмент (будь то 0, или − 7, или √ 2) полезен, пользуйтесь им. Если √ − 1 нет в списке странных нецелых чисел, это не означает, что его не существует. По моему мнению и по мнению физиков и математиков, это число так же реально, как и 1. Главная проблема с мнимыми числами скрыта в самом их названии. Если бы √ − 1 называлось «расширенным» вместо «мнимого», возможно, оно не создавало бы таких мучений для многих поколений студентов. Или, может быть, следовало назвать его «числом Е» по имени великого математика Леонарда Эйлера[79], который показал нам, что е π √ − 1 + 1 = 0. Ричард Фейнман называл эту формулу «самой замечательной в математике». Она связывает пять важнейших чисел – е (основание натурального логарифма, математическую константу), π, √ − 1, 1 и 0 – совершенно неожиданным способом, который оказывается чрезвычайно ценным и для электротехники, и для квантовой физики. Замечательно, что Эйлер впервые использовал для обозначения основания натурального логарифма букву е, которая в честь ученого называется числом Эйлера. Вернемся к мнимому времени. Часы не могут показать √ − 1, на них нанесены только целые числа, по которым двигаются малая и большая стрелки. Как может время быть мнимым и даже расширенным? Ответ состоит в том, что формулы Минковского представляют время вещественными числами – часами, минутами и секундами. Мнимо именно абстрактное пространство‑ время, постулированное Минковским. Время остается реальным, но координата в пространстве‑ времени оказывается вещественным числом t, помноженным на мнимое число √ − 1. Тем не менее когда физики говорят о конструкции Минковского – четырехмерном пространстве‑ времени, они рассматривают координату it в качестве мнимого времени.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|