Характеристики акустических систем
Стр 1 из 4Следующая ⇒ Основные термины и понятия Небольшое введение в музыку Начнем оригинально: с начала. С того, что звучит через колонки, и о прочих наушниках. Так уж повелось, что среднестатистическое человечье ухо различает сигналы в диапазоне от 20 до 20 000 Гц (или 20 кГц). Этот довольно солидный диапазон в свою очередь делится обычно на 10 октав (можно поделить на любое другое количество, но принято именно 10). В общем случае октава – это диапазон частот, границы которого вычисляются удвоением или ополовиниванием частоты. Нижняя граница последующей октавы получается удвоением нижней границы предыдущей октавы. Кто знаком с булевой алгеброй, то тому этот ряд покажется странно знакомым. Степени двойки с дописанным нулем в конце в чистом виде. Собственно, зачем нужно знание октав? Оно необходимо для того, чтобы прекратить путаницу в том, что надо называть нижним, средним или еще каким басом и тому подобное. Общепринятый набор октав однозначно определяет, кто есть кто с точностью до герца.
Последняя строка не нумерована. Это связано с тем, что в стандартную десятку октав она не входит. Обратите внимание на столбец "Название 2". Здесь содержатся названия октав, которые выделяются музыкантами. У этих "странных" людей нет понятия глубокого баса, зато есть одна октава сверху - от 20480 Гц. Поэтому такое расхождение в нумерации и названиях.
Теперь можно говорить более предметно о частотном диапазоне акустических систем. Следует начать с неприятной новости: глубокого баса в мультимедийной акустике нет. 20 Гц подавляющее большинство любителей музыки на уровне -3 дБ попросту никогда не слышало. А теперь новость приятная и неожиданная. В реальном сигнале таких частот тоже нет (за некоторым исключением, естественно). Исключением является, например, запись с судейского диска IASCA Competition. Песенка называется "The Viking". Там даже 10 Гц записаны с приличной амплитудой. Этот трек записывали в специальном помещении на огромном органе. Систему, которая отыграет "Викингов", судьи увешают наградами, как новогоднюю елку игрушками. А с реальным сигналом все проще: басовый барабан – от 40 Гц. Здоровенные китайские барабаны – тоже от 40 Гц (есть там среди них, правда, один мегабарабан. Так он аж от 30 Гц начинает играть). Живой контрабас – вообще от 60 Гц. Как можно заметить, 20 Гц здесь не упоминаются. Поэтому можно не расстраиваться по поводу отсутствия настолько низких составляющих. Они для прослушивания реальной музыки не нужны. На рисунке представлена спектрограмма. На ней две кривые: фиолетовая DIN и зеленая (от старости) IEC. Эти кривые отображают распределение по спектру среднего музыкального сигнала. Характеристика IEC применялась до 60-х годов 20-го века. В те времена предпочитали не издеваться над пищалкой. А после 60-х эксперты обратили внимание на то, что предпочтения слушателей и музыка несколько поменялись. Это отразилось в стандарте великого и могучего DIN. Как видно, высоких частот стало гораздо больше. Но баса не прибавилось. Вывод: не нужно гоняться за супербасистыми системами. Тем более что желанных 20 Гц там все равно не положили в коробку.
Характеристики акустических систем Теперь, зная азбуку октав и музыки, можно приступить к пониманию АЧХ. АЧХ (амплитудно-частотная характеристика) – зависимость амплитуды колебания на выходе устройства от частоты входного гармонического сигнала. То есть системе подают на вход сигнал, уровень которого принимается за 0 дБ. Из этого сигнала колонки с усилительным трактом делают, что могут. Получается у них обычно не прямая на 0 дБ, а некоторым образом изломанная линия. Самое интересное, кстати, заключается в том, что все (от аудиолюбителей до аудиопроизводителей) стремятся к идеально ровной АЧХ, но "пристремиться" боятся. Собственно, в чем польза АЧХ и зачем авторы TECHLABS с завидным постоянством стараются замерить эту кривую? Дело в том, что по ней можно установить настоящие, а не нашептанные "злым маркетинговым духом" производителю границы частотного диапазона. Принято указывать, при каком падении сигнала граничные частоты все-таки проигрываются. Если не указано, то считается, что были взяты стандартные -3 дБ. Вот здесь и кроется подвох. Достаточно не указать, при каком падении были взяты значения границы, и можно абсолютно честно указывать хоть 20 Гц – 20 кГц, хотя, действительно, эти 20 Гц достижимы при уровне сигнала, который сильно отличается от положенных -3. Также польза АЧХ выражается в том, что по ней, хотя и приблизительно, но можно понять, какие проблемы возникнут у выбранной системы. Причем системы в целом. АЧХ страдает от всех элементов тракта. Чтобы понять, как будет звучать система по графику, нужно знать элементы психоакустики. Если коротко, то дело обстоит так: человек разговаривает в пределах средних частот. Поэтому и воспринимает их же лучше всего. И на соответствующих октавах график должен быть наиболее ровным, так как искажения в этой области сильно давят на уши. Также нежелательно наличие высоких узких пиков. Общее правило здесь такое: пики слышны лучше, чем впадины, и острый пик слышен лучше пологого. Подробнее на этом параметре мы остановимся, когда будем рассматривать процесс его измерения.
Фазочастотная характеристика (ФЧХ) показывает изменение фазы гармонического сигнала, воспроизводимого АС в зависимости от частоты. Однозначно может быть вычислена из АЧХ с помощью преобразования Гильберта. Идеальная ФЧХ, говорящая, что система не имеет фазочастотных искажений, прямая, проходящая через начало координат. Акустика с такой ФЧХ называется фазолинейной. Долгое время на эту характеристику не обращали внимания, так как существовало мнение о том, что человек не восприимчив к фазочастотным искажениям. Сейчас же измеряют и указывают в паспортах дорогих систем.
Импульсной характеристикой (импульсным откликом) называют выходной сигнал АС при подаче на вход короткого одиночного импульса. Идеал – если импульсная характеристика повторит импульс на входе без изменений. Часто же до и после импульса на выходе появляются всплески меньшей амплитуды. Такое поведение отклика фильтра говорит о том, что на выходе акустической системы импульс тоже будет порождать паразитные колебания.
Переходная характеристика – выходной сигнал фильтра, который является реакцией на входной сигнал типа ступенька (сигнал с нуля мгновенно достигает некоторой амплитуды и устанавливается на таком уровне). Такой импульс также может порождать и порождает паразитные колебания. Естественно, это отразится и на поведении АС, которая воспроизведет и импульс, и паразитные колебания. Характеристика позволяет судить о когерентности системы. Кумулятивное затухание спектра (КЗС) – совокупность осевых АЧХ (АЧХ, измеренных на акустической оси системы), полученных с определенным временным промежутком при затухании единичного импульса и отраженных на одном трехмерном графике. Таким образом, по графику КЗС можно точно сказать, какие области спектра с какой скоростью будут затухать после импульса, то есть график позволяет выявлять запаздывающие резонансы АС. Если КЗС имеет много резонансов после верхней середины, то такая акустика субъективно будет звучать "грязно", "с песочком на ВЧ" и т.д. Импеданс АС – это полное электрическое сопротивление АС, включая сопротивления элементов фильтра (комплексная величина). Это сопротивление содержит в себе не только активное сопротивление, но и реактивные сопротивления емкостей и индуктивностей. Так как реактивное сопротивление зависит от частоты, то и импеданс целиком подчиняется также ей.
Если говорят об импедансе, как о численной величине, начисто лишенной комплексности, то высказываются о его модуле. График импеданса трехмерный (амплитуда-фаза-частота). Обычно рассматриваются его проекции на плоскости амплитуда-частота и фаза-частота. Если объединить эти два графика, то получится график Боде. А проекция амплитуда-фаза – график Найквиста. Учитывая то, что импеданс зависит от частоты и не постоянен, по нему можно легко определить, какую сложность представляет собой акустика для усилителя. Также по графику можно сказать, какая это акустика (ЗЯ – закрытый ящик), ФИ (с фазоинвертором), как будут воспроизводиться отдельные участки диапазона. Чувствительность – см. в параметрах Тиля-Смолла. Когерентность – согласованное протекание нескольких колебательных или волновых процессов во времени. Означает, что сигнал от разных ГГ акустических систем придет к слушателю одновременно, то есть говорит о сохранности фазовой информации.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|