О численных решениях дифференциальных уравнений
Лабораторная работа № 2 Приближенное решение дифференциальных уравнений первого порядка методом Эйлера. Вариант 16 Выполнила: студентка группы УР-21 Хмелевская С. А. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ О ЧИСЛЕННЫХ РЕШЕНИЯХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ Пусть необходимо найти решение уравнения
с начальным условием Разложим искомую функцию
Учтя уравнение (1) и обозначив Эту формулу можно применять многократно, находя значения функции во все новых и новых точках.
Такой метод решения обыкновенных дифференциальных уравнений называется методом Эйлера. Геометрически метод Эйлера означает, что на каждом шаге мы аппроксимируем решение (интегральную кривую) отрезком касательной, проведенной к графику решения в начале интервала. Точность метода невелика и имеет порядок h. Говорят, что метод Эйлера – метод первого порядка, то есть его точность растет линейно с уменьшением шага h. Существуют различные модификации метода Эйлера, позволяющие увеличить его точность. Все они основаны на том, что производную, вычисленную в начале интервала, заменяют на среднее значение производной на данном интервале. Среднее значение производной можно получить (конечно же только приближенно) различными способами. Можно, например, оценить значение производной в середине интервала Можно также оценить среднее значение производной на интервале
Такие модификации метода Эйлера имеет уже точность второго порядка.
Оценку значения производной можно улучшить, увеличивая число вспомогательных шагов. На практике наиболее распространенным методом решения обыкновенных дифференциальных уравнений является метод Рунге-Кутты четвертого порядка. Для оценки значения производной в этом методе используется четыре вспомогательных шага. Формулы метода Рунге-Кутты следующие
Перечисленные методы можно применять и для решения систем дифференциальных уравнений. Поскольку многие дифференциальные уравнения высших порядков могут быть сведены заменой переменных к системе дифференциальных уравнений первого порядка, рассмотренные методы могут быть использованы и для решения дифференциальных уравнений порядка выше первого.
ПОСТАНОВКА ЗАДАЧИ Решить дифференциальное уравнение y o= 1
Читайте также: Б) Решим ту же систему уравнений методом Гаусса. Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|