Моделирование динамических систем
Стр 1 из 2Следующая ⇒ Моделирование Моделирование является общепризнанным средством познания действительности. Этот процесс состоит из двух больших этапов: разработки модели и анализа разработанной модели. Моделирование позволяет исследовать суть сложных процессов и явлений с помощью экспериментов не с реальной системой, а с ее моделью. Известно, что для принятия разумного решения по организации работы системы не обязательно знание всех характеристик системы, всегда достаточен анализ ее упрошенного, приближенного представления. В области создания новых систем моделирование является средством исследования важных характеристик будущей системы на самых ранних стадиях ее разработки. С помощью моделирования возможно исследовать узкие места будущей системы, оценить производительность, стоимость, пропускную способность — все главные ее характеристики еще до того, как система будет создана. С помощью моделей разрабатываются оптимальные операционные планы и расписания функционирования существующих сложных систем. В организационных системах имитационное моделирование становится основным инструментом сравнения различных вариантов управляющих решений и поиска наиболее эффективного из них как для решений внутри цеха, организации, фирмы, так и на макроэкономическом уровне. Модели сложных систем строятся в виде программ, выполняемых на компьютере. Компьютерное моделирование существует почти 50 лет, оно возникло с появлением первых компьютеров. С тех пор сложились две перекрывающиеся области компьютерного моделирования, которые можно охарактеризовать как математическое моделирование и имитационное моделирование.
Имитационное моделирование — это разработка и выполнение на компьютере программной системы, отражающей поведение и структуру моделируемого объекта. Компьютерный эксперимент с моделью состоит в выполнении на компьютере данной программы с разными значениями параметров (исходных данных) и анализе результатов этих выполнений. Проблемы разработки имитационных моделей Имитационное моделирование — очень обширная область. Можно по-разному подходить к классификации решаемых в ней задач. В соответствии с одной из классификаций эта область насчитывает в настоящее время четыре основных направления: 1. моделирование динамических систем, 2. дискретно-событийное моделирование, 3. системная динамика 4. агентное моделирование. В каждом из этих направлений развиваются свои инструментальные средства, упрощающие разработку моделей и их анализ. Данные направления (кроме агентного моделирования) базируются на концепциях и парадигмах, которые появились и были зафиксированы в инструментальных пакетах моделирования несколько десятилетий назад и с тех пор не менялись. Моделирование динамических систем Направлено на исследование сложных объектов, поведение которых описывается системами алгебро-дифференциальных уравнений. Инженерным подходом к моделированию таких объектов 40 лет назад была сборка блок-схем из решающих блоков аналоговых компьютеров: интеграторов, усилителей и сумматоров, токи и напряжения в которых представляли переменные и параметры моделируемой системы. Этот подход и сейчас является основным в моделировании динамических систем, только решающие блоки являются не аппаратными, а программными. Он реализован, например, в инструментальной среде Simulink. Дискретно-событийное моделирование В немрассматриваются системы с дискретными событиями. Для создания имитационной модели такой системы моделируемая система приводится к потоку заявок, которые обрабатываются активными приборами. Например, для моделирования процесса обслуживания физических лиц в банке физические лица представляются в виде потока заявок, а работники банка, обслуживающие их представляются активными приборами. Идеология дискретно-событийного моделирования была сформулирована более 40 лет назад и реализована в среде моделирования GPSS, которая с некоторыми модификациями до сих пор используется для обучения имитационному моделированию
Системная динамика – это направление в изучении сложных систем, исследующее ихповедениево времени и в зависимости от структуры элементов системы и взаимодействия между ними. В том числе: причинно-следственных связей, петельобратных связей, задержек реакции, влияния среды и других. Основоположником системной динамики является американский ученый Джей Форрестер. Дж. Форрестер применил принципы обратной связи, существующей в системах автоматического регулирования, для демонстрации того, что динамика функционирования сложных систем, в первую очередь производственных и социальных, существенно зависит от структуры связей и временных задержек в принятии решений и действиях, которые имеются в системе. В 1958 году он предложил использовать для компьютерного моделирования сложных систем потоковые диаграммы, отражающих причинно-следственные связи в сложной системе, В настоящее время системная динамика превратилась в зрелую науку. Общество системной динамики (The- System Dynamics Society, www.systemdynamics.org) является официальным форумом системных аналитиков во всем мире. Ежеквартально выходит журнал System Dynamics Review, ежегодно созываются несколько международных конференций по этим проблемам. Системная динамика как методология и инструмент исследования сложных экономических и социальных процессов изучается во многих бизнес-школах по всему миру.. Агентное моделирование Агентное моделирование (agent-based model (ABM)) — метод имитационного моделирования, исследующий поведение децентрализованныхагентови то, как такое поведение определяет поведение всей системы в целом. В отличие отсистемной динамикианалитик определяет поведение агентов на индивидуальном уровне, а глобальное поведение возникает как результат деятельности множества агентов (моделирование «снизу вверх»).
Агентное моделирование включает в себя элементы теории игр, сложных систем, мультиагентных систем и эволюционного программирования, методы Монте-Карло, использует случайные числа. Существует множество определений понятия агента. Общим во всех этих определениях является то, что агент — это некоторая сущность, которая обладает активностью, автономным поведением, может принимать решения в соответствии с некоторым набором правил, может взаимодействовать с окружением и другими агентами, а также может изменяться (эволюционировать). Многоагентные (или просто агентные) модели используются для исследования децентрализованных систем, динамика функционирования которых определяется не глобальными правилами и законами, а наоборот, эти глобальные правила и законы являются результатом индивидуальной активности членов группы. Цель агентных моделей — получить представление об этих глобальных правилах, общем поведении системы, исходя из предположений об индивидуальном, частном поведении ее отдельных активных объектов и взаимодействии этих объектов в системе. При создании агентной модели логика поведения агентов и их взаимодействие не всегда могут быть выражены чисто графическими средствами, здесь часто приходится использовать программный код. Для агентного моделирования используются пакеты Swarm и RePast. Примером агентной модели является модель развития города. В современном мире информационных технологий десятилетие сравнимо с веком прогресса в традиционных технологиях, Но в имитационном моделировании почти без изменения применяются идеи и решения 60-х годов прошлого века. На базе этих идей еще в прошлом веке были разработаны программные средства, которые с незначительными изменениями применяются до сих пор. Разработка имитационных модели с использованием этих программ является весьма сложной и трудоемкой задачей, доступной только высококвалифицированным специалистам и требующей больших временных затрат. Один из разработчиков имитационных моделей Роберт. Шеннон писал: «разработка даже простых моделей требует 5—6 человеко-месяцев и стоит порядка 30 ООО долларов, а сложных — на два порядка больше». Иными словами, трудоемкость построения сложной имитационной модели традиционными методами оценивается в сотню человеко-лет.
Имитационное моделирование традиционными методами реально используется узким кругом профессионалов, которые должны иметь не только глубокие знания в той прикладной области, для которой строится модель, но также глубокие знания в программировании, теории вероятностей и статистике. Кроме того, проблемы анализа современных реальных систем часто требуют разработки моделей, не укладывающихся в рамки одной единственной парадигмы моделирования. Например, при моделировании системы с преобладающим дискретным типом событий может потребоваться введение переменных, описывающих непрерывные характеристики среды. В парадигму блочной модели потоков данных совершенно не вписываются дискретно-событийные системы, В системно-динамической модели часто возникает необходимость учета дискретных событий или моделирования индивидуальных свойств объектов из разнородных групп. Поэтому использование указанных выше программных средств не отвечает современным требованиям,.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|