Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Последовательное соединение элементов

 

 

Пусть n элементов активного сопротивления соединены последовательно (рисунок 7).

 

 

Рис.7.

В соответствии с выбранным направлением обхода по второму закону Кирхгофа получим уравнение:

.

характерной особенностью последовательного соединения является равенство токов в каждом из элементов, входящих в соединение.

При  запишем:

, то есть .

Таким образом, при последовательном соединении нескольких резисторов эквивалентное сопротивление равно сумме сопротивлений, входящих в соединение.

При последовательном соединении катушек индуктивности (рисунок 8) можно записать:

.

 

Рис.8.

 

Если , то ,

следовательно .

Это означает, что эквивалентная индуктивность равна сумме индуктивностей, входящих в последовательное соединение.

В случае последовательного соединения конденсаторов (рисунок 9) по второму закону Кирхгофа можно записать:

 

.

 

Рис.9.

Заменяя  получим: .

Обратная ёмкость всех конденсаторов, соединенных последовательно, равна сумме обратных ёмкостей конденсаторов, входящих в соединение:

.

При этом эквивалентная ёмкость соединения будет меньше наименьшей ёмкости конденсатора, входящего в последовательное соединение.

 

Расчет сложных цепей с помощью уравнений Кирхгофа

 

Пример 1

Далеко не во всех случаях цепь представляет собой совокупность лишь последовательно и параллельно соединенных ветвей. В качестве примера рассмотрим вариант расчета с помощью уравнений Кирхгофа электрической цепи (рисунок 10). Цепь содержит  = 4 узлов и = 6 ветвей, включая источники напряжения.

 

 


Рис.10.

 

Для определения всех токов и напряжений в схеме достаточно найти значения токов во всех ветвях цепи. Зная ток, проходящий через любую из ветвей цепи, можно найти как напряжение этой ветви, так и напряжение между любой парой узлов цепи.

Если мы зададимся произвольно положительными направлениями токов в ветвях цепи и пронумеруем произвольно эти токи, то по первому закону Кирхгофа можно составить  уравнений относительно токов в ветвях цепи.

По второму закону Кирхгофа будет  линейно-независимых уравнений для напряжений  ветвей схемы.

Совокупность из  уравнений по первому закону Кирхгофа, и  уравнений, составленных по второму закону Кирхгофа, образует систему  линейно – независимых уравнений. Эта система будет неоднородной системой уравнений, так как ее свободными членами являются заданные напряжения источников.

Подобная система уравнений имеет единственное решение, позволяющее найти токи в ветвях цепи, а по ним и значения напряжений между любой парой узлов цепи.

Для примера составим систему уравнений по первому закону Кирхгофа (рисунок 10).

Число уравнений: .

Узел 1: ,

узел 2: ,

узел 3: .

В тоже время по второму закону Кирхгофа для контуров I, II, III можно составить систему из  уравнений.

.

Контур I: ,

контур II: ,

контур III: .

Таким образом, решая систему из 6 уравнений с шестью неизвестными токами, например по методу Крамера, определим неизвестные. Если в цепи будет источник тока, то в системе уравнений неизвестным будет напряжение на зажимах этого источника, а ток через источник будет равен току задающего источника. Общее число неизвестных сохранится прежним.

Пример 2

Для цепи (рисунок 11) определить токи  и , если E = 20 В, I 0 = 2 A, R 1 = 15 Ом, R 2= 85 Ом.

 

 

Рис.11.

 

Решение

Выберем направления токов ,   и обхода в контуре, составим уравнения по законам Кирхгофа. Число уравнений, составляемых по первому закону Кирхгофа:

.

Число уравнений по второму закону Кирхгофа:

.

Уравнение токов для узла 1:

.                                      (a)

Уравнение по второму закону Кирхгофа:

.                                     (б)

Подставим в уравнения (а) и (б) числовые значения получим:

,

.

Решив эту систему, определим токи  и :

; .


Литература

1. Белецкий А.Ф. Теория линейных электрических цепей. – М.: Радио и связь, 1986.

2. Бакалов В.П. и др. Теория электрических цепей. – М.: Радио и связь, 1998.

3. Качанов Н. С. и др. Линейные радиотехнические устройства. М.: Воен. издат., 1974.

4. В.П. Попов Основы теории цепей – М.: Высшая школа, 2000

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...