Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

2. 10. Химические класификации нефтей




2. 10. ХИМИЧЕСКИЕ КЛАСИФИКАЦИИ НЕФТЕЙ

 

Существуют различные классификации нефтей по химическому составу. В основу большинства из них положен углеводородный состав отдельных фракций нефти, т. е. преобладание УВ того или иного класса. Как правило, оказывается, что выделенные классы нефтей, так или иначе, коррелируются с содержанием серы, смолисто-асфальтеновых компонентов, твердых парафинов и плотностью нефти.

По классификации, разработанной Грозненским нефтяным исследовательским институтом, выделяется шесть классов нефтей: 1) метановые, 2) метаново-нафтеновые, 3) нафгеновые, 4) нафтеново-метаново-ароматические, 5) нафтеново-ароматические, 6) ароматические. В метановых нефтях во всех фракциях содержится значительное количество алканов: в бензиновых более 50%, в масляных более 30%, типичными нефтями этого класса являются нефти полуострова Мангышлак (месторождения Узень и Жетыбай).

Метаново-нафтеновые нефти содержат в соизмеримых количествах алкановые и циклановые УВ, при незначительном содержании аренов, как правило, не более 10%, к этому классу относится большая часть нефтей крупных месторождений Волго-Уральской области и Западной Сибири.

Для нафтеновых нефтей характерно содержание циклановых УВ во всех фракциях приблизительно 60% и более, алканов, как и смолисто-асфальтеновых компонентов, в этих нефтях мало; типичными являются Балаханская и Сураханская нефти Баку.

В нафтеново-метаново-ароматических нефтях алканы, цикланы и арены присутствуют примерно в одинаковых количествах, при этом отмечаются значительные концентрации (до 10%) смол и асфальтенов.

Нафтеново-ароматические нефти характеризуются преобладанием нафтенов и аренов, алканы отмечены только в легких фракциях, причем в небольшом количестве, концентрация смолисто-асфальтеновых компонентов еще более возрастает (15—20%).

Ароматические нефти отличаются повышенным содержанием аренов во всех фракциях, это тяжелые нефти, они редко встречаются в природе; к нефтям этого класса, например, относится Бугурусланская нефть Урало-Поволжья.

 

 

2. 11. ТОВАРНАЯ И ТЕХНОЛОГИЧЕСКАЯ КЛАССИФИКАЦИИ НЕФТИ

 

Эти классификации близкие между собой, строятся по таким показателям, как содержание фракций, выкипающих при температуре до 350 °С, а также парафина, масел и др.

Все нефти по содержанию серы делятся на три класса:

I – малосернистые (не более 0, 5 %);

II - сернистые (0, 51–2 %);

III - высокосернистые (более 2 %).

По содержанию фракций, перегоняющихся до 350 °С, нефти делятся на три типа:

T1 – не менее 45 %;

Т2 – 30–44, 9 %;

Т3 – менее 30 %.

По потенциальному содержанию масел различают четыре группы нефтей:

М – не менее 25 % в расчете на нефть;

М2 – 15–25 % в рас­чете на нефть и не менее 45 % в расчете на мазут;

М3 – 15–25 %в рас­чете на нефть и 30–45 %в расчете на мазут;

М4 – менее 15 % в расчете на нефть.

Все нефти делятся по качеству масел, оцениваемому индексом вязкости, на две подгруппы:

И1 – индекс вязкости выше 85,

И2 – индекс вязкости 40–85.

По содержанию парафина нефти делятся на три вида:

П1 – малопарафиновые (не более 1, 5 %),

П2 – парафиновые (1, 51-6 %),

П3 – высокопарафиновые (более 6 %).

Используя эту классификацию, для любой промышленной нефти можно составить шифр (например, IТ2М2И2П1). По шифру нефти легко составить представление о наиболее рациональных путях ее переработки и о возможности замены ею ранее применявшейся в данном технологическом процессе нефти.

 

2. 12. ГАЗОВЫЕ УГЛЕВОДОРОДНЫЕ СИСТЕМЫ

 

Углеводородные газы (УВГ) являются частью природных углеводородных систем, газовой фазой природных УВ. Природные газы - это УВ растворы, имеющие газообразное в нормальных (атмосферных) условиях состояние, выделенные из состава более сложных природных систем.

 Природные газы находятся на Земле в различном состоянии: свободные в атмосфере и в газовых залежах растворенные в водах, сорбированные, окклюдированные, в виде твердых растворов - газогидратов; газы, растворенные в нефти и выделяющиеся при разработке и самоизлиянии, называются попутными газами. Высокое энергосодержание, способность к химическим превращениям, низкое загрязнение биосферы обусловливают использование УВГ в качестве наиболее удобного топлива и ценного химического сырья.

 

2. 13. СОСТАВ И СВОЙСТВА ГАЗОВ

Основными компонентами природного (горючего) газа являются углеводороды от метана до бутана включительно, отмечаются следы С58. Природные газы также содержат и неуглеводородные компоненты: углекислый газ, азот, сероводород, инертные газы. Главным компонентом природных горючих газов является метан. Природный газ считается сухим, если он состоит главным образом из метана (более 85%), с низким содержанием этана (менее 10%), практическим отсутствием пропана и бутана; с содержанием менее 10 см33 способных конденсироваться жидкостей. Тощий газ — пластовый газ метанового состава с низким содержанием этана, пропана и бутана. Количество конденсата в нем составляет 10-30см33. Газ жирный, если содержание конденсата составляет от 30 до 90 см33. В геохимии широко используется показатель «коэффициент сухости» (СН42+).

Природные газы бесцветны, легко смешиваются с воздухом, растворяемость их в воде и нефти различна. Свойства газов на поверхности и в пластовых условиях отличаются, они во многом определяются термобарическими условиями и физико-химическими параметрами среды. На растворимость природного газа влияют температура, давление, состав газа и нефти. Растворимость газа в нефти повышается с ростом давления и уменьшается с ростом температуры; она растет в ряду C1-C4. Растворимость газа уменьшается с увеличением плотности нефти. Давление, при котором данная нефть полностью насыщена газом, называется давлением насыщения; если давление в залежи падает, то газ выделяется в свободную фазу.

Плотность газов - масса вещества в единице объема, выражается в г/см3 или отношением молекулярной массы (в молях) к объему моля ρ = М/22, 4 л. Плотность метана 7, 14*10-4, бутана 25, 93*10-4, диоксида углерода 19, 63*10-4 г/см3. Обычно используется относительная плотность по воздуху (безразмерная величина - отношение плотности газа к плотности воздуха, при нормальных условиях плотность воздуха 1, 293 кг/м3). Относительная плотность метана 0, 554 (20°С), этана 1, 05, пропана 1, 55, ди­оксида углерода 1, 53, сероводорода 1, 18.

Газонасыщенность (Г) - газонасыщенность вод (см3/л, м33), это суммарное содержание газа в указанном объеме флюида (л, м3). В кайнозойских нефтегазоносных бассейнах Сахалина, Куринской депрессии газонасыщенность вод газами УВ состава до глубины 3 км не превышает 3, 3 м33, расчетная газонасыщенность вод на глубине 6 км - 7, 7 м33.

Метан (СН4) - наиболее распространенный и миграционноспосбный УВ газ в природе, характеризуется низкой сорбционной способностью, небольшой растворимостью в воде, которая также зависит от температуры: Метан легко загорается (Твосп. = 695—742°С), его теплота сгорания 50 МДж/кг. Смеси метана с воздухом взрывоопасны (нижний предел взрываемости 5%). Метан не содержит связей С-С, менее прочных, чем С-Н, что обусловливает его термическую прочность и устойчивость к химическим воздействиям. Генезис метана может быть биохимическим, термокаталитическим (катагенетическим), метаморфическим, вулканическим.

Газообразные гомологи метана - (этан С2Н6, пропан С3Н8, бутан С4Н10) имеют большую, по сравнению с метаном сорбционную способность и низкий коэффициент диффузии, что позволяет им концентрироваться в газах закрытых пор. Наибольшая из всех УВ газов растворимость в воде у этана (0, 047 м33 при 20°С). Смеси этих газов с воздухом также взрывоопасны. Содержание каждого из гомологов в газах чисто газовых залежей обычно менее 0, 5%, в нефтяных попутных газах достигает 30%. Газообразные гомологи метана используются в производстве синтетического каучука, полиэтилена, полипропилена, других пластмасс.

Двуокись (диоксид) углерода (углекислота) С02 в нормальных условиях - газ, при -78°С - твердая снегоподобная масса (сухой лед), при нагревании непосредственно переходит в газ; С02 в полтора раза тяжелее воздуха. Содержание С02 в газах и нефтях изменяется от 0 до 59%, двуокись углерода хорошо растворяется в воде, растворимость возрастает с увеличением давления. Так, при 20°С и 0, 1 МПа в одном объеме воды растворяется приблизительно один объем С02. При давлении 30 МПа и 100°С в одном объеме воды может раствориться 30 объемов С02. Двуокись углерода имеет различный генезис: образуется при окислении углеводородов и других органических соединений, при декарбоксилировании органических кислот, при разложении бикарбонатов, возможно и мантийное происхождение С02.

Азот — бесцветный газ без запаха, содержание его в воздухе 75, 5% по весу (78, 09 об. %), в природных газах варьирует в широких пределах (от сотых долей до 99%). В нефтяных попутных газах содержание азота изменяется от 0 до 50%. При длительной эксплуатации попутный нефтяной газ обедняется азотом, что связано с его малой растворимостью в нефти. Газ химически инертный. Азот может быть атмосферного, биохимического и глубинного происхождения; в водах верхней части осадочного чехла он чаще всего атмосферный, с глубиной его содержание обычно падает.

Сероводород (H2S) - бесцветный горючий газ с характерным резким запахом, хорошо растворимый в воде. Плотность его 1, 538 г/л, теплота сгорания 2, 3 МДж/м3; температура кипения 60°К. Сероводород высокотоксичный газ, при концентрации его в воздухе более 0, 1% может наступать летальный исход; предельно допустимое содержание в воздухе 0, 01 мг/л. Сероводород встречается в свободных природных газах, обычно его концентрация редко превышает 1%. В газах, связанных с карбонатно-сульфатными толщами, концентрация H2S увеличивается до 10-20, редко до 50%. Сероводород встречается также в вулканических и фумарольных газах. В природе известны разные источники H2S: биохимическое окисление ОВ, восстановление сульфатов сульфат-редуцирующими бактериями, при химическом восстановлении сульфатов, при термолизе ОВ и т. д. Промышленную ценность представляют газы, содержащие 0, 05-0, 1% сероводорода.

Водород 2) самый легкий газ в природе (легче воздуха в 14 раз), бесцветный, не имеет запаха, плотность по воздуху 0, 0695, высшая теплота сгорания 12, 2 МДж/м3. Водород имеет два стабильных изотопа: протий и дейтерий и один радиоактивный — тритий; доля дейтерия в водороде Земли очень мала.

Основным источником свободного водорода в земной коре является вода, при взаимодействии которой с окислами металлов при высоких температурах образуется водород; водород также - типичный компонент вулканических фумарольных и прочих глубинных газов. Возможен генезис водорода при биохимическом и радиоактивном разложении ОВ.

Гелий - газ без цвета и запаха, химически инертный, т. е. неспособный к химическим реакциям, горению, взрыву. Среднее содержание гелия в земной коре 1 10-6 вес. %, в атмосфере 5, 2-10 -4 об. %. В природных газах содержание гелия достигает 18 об. %, в свободных не превышает 10%, в попутных 0, 5%. Природные газы с повышенным содержанием гелия являются ценным химическим сырьем.

Стабильные изотопы гелия 3Не и 4Не имеют главным образом радиогенный генезис - образуются при альфа-распаде радиоактивных элементов (урана, тория) и характеризуются абсолютным преобладанием 4Не. Гелий атмосферы представляет смесь первичного и радиогенного с относительно постоянным составом (3Не/4Не = 1, 4-10-6). Повышенные концентрации гелия отмечаются в зонах нарушений. Данные об изотопном составе гелия используются для определения его корового или мантийного генезиса.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...