Нуклеозидмоноциклофосфаты.
Лекция № 25 Нуклеиновые кислоты (45 минут) План лекции 1. Компоненты нуклеиновых кислот а) азотистые основания б) углеводы в) фосфорная кислота 2. Нуклеозиды 3. Нуклеотиды а) мононуклеотиды б) олиго- и полинуклеотиды 4. Вторичная структура ДНК 5. Химические свойства нуклеиновых кислот. а) кислотный гидролиз б) щелочной гидролиз в) ферментативный гидролиз
Нуклеиновые кислоты - это водорастворимые высокомолекулярные соединения, макромолекулы которых состоят из многократно повторяющихся звеньев - нуклеотидов. Поэтому их также называют полинуклеотидами. Впервые они были обнаружены в 1868 году швейцарским врачом Мишером в ядрах погибших лейкоцитов, что и определило их название (от лат. nucleus - ядро). По химическому строению нуклеиновые кислоты - биологические полимеры, состоящие из остатков фосфорной кислоты, моносахарида и одного из пуриновых или пиримидиновых гетероциклических оснований. Входящие в состав нуклеиновых кислот гетероциклические соединения пуринового и пиримидинового ряда называют нуклеиновыми основаниями или просто основаниями. В общем виде молекулу нуклеиновой кислоты можно представить следующим образом: Фрагмент макромолекулы нуклеиновой кислоты моносахарид-основание называется нуклеозидом, а фрагмент моносахарид-основание-фосфат - нуклеотидом. Нуклеиновые кислоты присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. Особенность нуклеиновых кислот заключается в том, что обычно «неделимое» мономерное звено в полинуклеотидах может быть разделено на составные части: нуклеотиды и нуклеозиды, которые помимо того, что служат строительными блоками при синтезе нуклеиновых кислот, играют и вполне самостоятельную роль в процессах обмена веществ, а также участвуют в качестве коферментов в реакциях переноса остатков сахаров, аминов и других биомолекул.
Компоненты нуклеиновых кислот Азотистые основания. В состав нуклеиновых кислот входят гетероциклические основания пиримидинового ряда: урацил, тимин, цитозин и пуринового ряда: аденин и гуанин. Для удобства используют однобуквенные обозначения (символы) гетероциклических оснований (русские или латинские): Пиримидиновые основания Пуриновые основания Нумерация атомов производится в указанном порядке. Отметим также, что в физиологических условиях нуклеиновые основания существуют только в лактамной и аминной формах. Во всех формах гетероциклы сохраняют ароматичность и имеют плоское строение, благодаря чему отличаются высокой термодинамической стабильностью. Углеводы. Углеводным компонентом нуклеиновых кислот являются пентозы: D-рибоза или 2-дезокси-D-рибоза. Обе пентозы всегда находятся в фуранозной форме и имеют b-конфигурацию аномерного атома С-1¢ (в формулах нуклеотидов и нуклеозидов атомы углерода моносахаридов нумеруются цифрой со штрихом): Фосфорная кислота. Остатки фосфорной кислоты (H3PO4) входят в состав нуклеотидов и этерифицируют D-рибозу и 2-дезокси-D-рибозу в положениях 3¢ и 5¢. В этой связи нуклеотиды и полинуклеотиды можно рассматривать, с одной стороны, как сложные эфиры нуклеозидов (фосфаты), а с другой - как кислоты. Остатки моносахаридов и фосфорной кислоты выполняют структурную функцию и являются носителями гетероциклических оснований. Нуклеозиды Нуклеозиды состоят из гетероциклических оснований, связанных с моносахаридом N-гликозидной связью. В образовании этой связи участвуют аномерный атом углерода моносахарида и атомы азота N-1 (у пиримидинового основания) и N-9 (у пуринового основания):
В зависимости от углеводного остатка нуклеозиды делятся на рибонуклеозиды и дезоксирибонуклеозиды. Номенклатурные названия нуклеозидов строятся аналогично названиям гликозидов, например, b-аденинрибофуранозид и т. д. Однако чаще используются названия с суффиксами -идин у пиримидиновых и -озин у пуриновых нуклеозидов и приставкой дезокси- у дезоксирибонуклеозидов: цитозин + рибоза = цит идин; цитозин + дезоксирибоза = дезокси цит идин; аденин + рибоза = аден озин; аденин + дезоксирибоза = дезокси аден озин. Исключением является название тимидин, используемое для дезокситимидина, входящего в состав ДНК. Кроме того, нуклеозиды обозначают символами, производимыми от входящих в них оснований. В случае дезоксирибонуклеозидов перед символом ставят строчную букву д (лат. d). Символами удобно пользоваться при обозначении первичной структуры ДНК или РНК. Если речь идет только о ДНК, букву d обычно пропускают. Нуклеозиды ДНК.
Нуклеозиды РНК.
Нуклеозиды значительно лучше растворимы в воде, чем исходные азотистые основания. Подобно всем гликозидам, нуклеозиды устойчивы к действию щелочей, но при нагревании легко подвергаются кислотному гидролизу с разрывом гликозидной связи и образованием основания и пентозы: Пиримидиновые нуклеозиды значительно более устойчивы к гидролизу, чем пуриновые. В условиях in vivo гидролиз обоих типов нуклеозидов осуществляется при помощи специфических ферментов, называемых нуклеозидазами. Нуклеотиды Нуклеотиды - это производные нуклеозидов, которые образуются в результате этерификации пентозного фрагмента фосфорной кислотой. В зависимости от строения пентозы различают рибонуклеотиды (мономерные звенья РНК) и дезоксирибинуклеотиды (мономерные звенья ДНК). В 2-дезоксирибозе имеются только два положения, по которым может образовываться сложноэфирная связь - а именно 3¢- и 5¢-положения. В случае рибонуклеотидов фосфатная группа может находиться в положениях 2¢, 3¢ и 5¢. В биологических системах встречаются нуклеотиды всех типов, однако наиболее распространены нуклеозид-5¢-фосфаты. За счет фосфатного остатка нуклеотиды проявляют свойства кислот и в физиологических условиях (pH» 7) находятся в практически полностью ионизированном состоянии.
Мононуклеотиды. Мононуклеотиды - это повторяющиеся мономерные единицы олигонуклеотидов и полинуклеотидов. Нуклеозидмонофосфаты. Нуклеозидмонофосфаты содержат только один остаток фосфорной кислоты. Например: Для мононуклеотидов также используют два вида названий (табл. 3.), отражающих их принадлежность как к сложным эфирам, так и к кислотам. В первом случае название включает наименование нуклеозида с указанием положения в нем фосфатного остатка: аденозин-5¢-фосфат*, уридин-5¢-фосфат и т. д. Широко используются и тривиальные названия, имеющие окончание «-овая кислота», например, 5¢-Уридиловая кислота. Для удобства введены сокращения: трехбуквенные - АМФ (лат. AMP), УМФ (лат. UMP) и т.д. и однобуквенные - pA, pU и т.д. В биохимической литературе встречаются как русские, так и латинские обозначения, однако более широко используются латинские. Сокращения AMP, GMF и т.д. всегда относятся к 5¢-нуклеотидам. У других, например, 3¢-производных в сокращенном названии указывается положение фосфатной группы: 3¢-AMP, 3¢-GMP и т. д. * вместо «монофосфат» часто пишут просто «фосфат». В однобуквенных кодах 5¢-фосфаты записываются с добавлением латинской буквы «p» перед символом нуклеозида (pA), 3¢-фосфаты - после символа нуклеозида (Ap). Важнейшие нуклеотиды, входящие в состав нуклеиновых кислот.
Сложноэфирные связи с фосфатными остатками в мононуклеотидах относительно устойчивы к кислотному гидролизу. Однако фермент 5¢-нуклеотидаза способен отщеплять фосфатную группу в положении 5¢, не затрагивая при этом N-гликозидную связь.
Нуклеозидмоноциклофосфаты. Существуют нуклеотиды, в которых фосфорная кислота одновременно этерифицирует две гидроксильные группы пентозного остатка с образованием устойчивого шестичленного цикла. В этой связи в их названиях используют приставку цикло-, например, циклоаденозин-монофосфат (cAMP) или циклогуанозинмонофосфат (cGMP). Эти два нуклеозидциклофосфата присутствуют практически во всех клетках живых организмов: Биологическая роль циклических нуклеотидов была открыта сравнительно недавно. Так, аденозин-3¢, 5¢-циклофосфат выполняет роль внутриклеточного «посредника» в процессах, индуцируемых гормоном адреналином. Нуклеозид-5¢-дифосфаты (НДФ) и нуклеозид-5¢-трифосфаты (НТФ). Во всех тканях организма в свободном состоянии содержатся не только моно-, но и ди-, а также трифосфаты нуклеозидов. Наиболее известными являются аденозин-5¢-дифосфат (АДФ) аденозин-5¢-трифосфат (АТФ). Нуклеотиды, фосфорилированные в разной степени, способны к взаимопревращениям путем наращивания или отщепления фосфатных групп. Дифосфатная группа содержит одну, а трифосфатная - две ангидридные связи, называемые макроэргическими, поскольку они обладают большим запасом энергии. При расщеплении макроэргической связи Р - О выделяется энергия, приблизительно равная 32 кДж/моль. Этим объясняется важнейшая роль АТФ как «поставщика» энергии во всех живых клетках. Ангидридные связи могут гидролизоваться либо специфичными ферментами, либо при кипячении в присутствии HCl. Ни сложноэфирная связь, ни N-гликозидная при этом не расщепляются.
Взаимные превращения АМФ, АДФ и АТФ. Олиго- и полинуклеотиды. Олигонуклеотидами называют соединения, в которых несколько нуклеозидов (до 20) соединены между собой фосфодиэфирными связями. Нуклеозид со свободной 5¢-OH-групой называется Полинуклеотиды представляют собой линейные гетерополимеры, также состоящие из последовательности мононуклеозидных единиц, соединенных фосфатным мостиком. Полинуклеотиды, состоящие из ковалентно связанных между собой остатков дезоксирибонуклеозидов, называются дезоксирибонуклеиновыми кислотами (ДНК), а полинуклеотиды, состоящие из остатков рибонуклеозидов - рибонуклеиновыми кислотами (РНК). В обоих случаях мононуклеозиды связаны между собой при помощи фосфодиэфирных мостиков, соединяющих 3¢-положение одного мононуклеотида с 5¢-положением его соседа.
Нуклеиновые кислоты также различаются и по составу входящих в них гетероциклических оснований: урацил входит только в состав РНК, а тимин - только в состав ДНК. Аденин, цитозин и гуанин являются постоянными компонентами полинуклеотидов. Молекулярная масса ДНК достигает десятков миллионов. Это самые длинные из известных макромолекул. Значительно меньше молекулярная масса РНК (от нескольких сотен до десятков тысяч). ДНК содержатся в основном в ядрах клеток, РНК - в рибосомах и протоплазме клеток.
Воспользуйтесь поиском по сайту: ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|