Рискованное предсказание
Они видят лишь тени, свои или чужие, отбрасываемые огнем на стену пещеры. Платон
Философ Карл Поппер использовал термин «рискованное предсказание» для описания процесса, которым ученые выверяют недоказанные теории. Хорошие теории, говорил Поппер, создают сопряженный с риском прогноз. Они предсказывают неочевидные факты или события, которые имеют большой риск не произойти или быть опровергнутыми. Когда такие события и в самом деле случаются, когда подтверждаются неочевидные факты, теория обретает достоверность и жизненность. Так, предсказанное Ньютоном возвращение кометы Галлея в 1758 году стало самым ярким подтверждением его теории гравитации. Теория относительности Эйнштейна была подтверждена в 1919 году наглядной демонстрацией того, что масса солнца «искривляет» свет далеких звезд — точь-в-точь как и предсказывала теория. К концу 1970-х годов теория канцерогенеза, предложенная Вармусом и Бишопом, также породила одно рискованное предсказание. Вармус с Бишопом продемонстрировали, что во всех нормальных клетках существуют предшественники онкогенов — протоонкогены. Ученые обнаружили активированную версию протоонкогена src в вирусе саркомы Рауса. Они предположили, что мутации таких генов вызывают рак — однако их теории недоставало одного критически важного звена в доказательстве. Если Вармус и Бишоп правы, то в раковых клетках существуют мутированные версии таких протоонкогенов. На тот момент другие исследователи уже выделили из ретровирусов целый набор всевозможных онкогенов, однако никому не удалось обнаружить активированный мутировавший онкоген в раковых клетках. «Выделение такого гена, — писал онколог Роберт Вайнберг, — означало бы выход из пещеры на свет… Там, где ученые до сих пор видели лишь тени онкогенов, они узрят в плоти и крови гены, обитающие в раковых клетках».
Роберту Вайнбергу мучительно хотелось выйти из теней. Выучившись на вирусолога в эпоху великой вирусологии, в 1960-х годах он работал под руководством Дульбекко в институте Солка, выделяя ДНК из вирусов обезьян, чтобы исследовать их гены. В 1970-е годы, когда Темин и Балтимор открыли обратную транскриптазу, Вайнберг упорно трудился, очищая гены вирусов обезьян. Через шесть лет Вармус и Бишоп объявили об открытии клеточного src, а Вайнберг был занят все тем же. Ему казалось, что он увяз в болоте: слава ходит вокруг да около, обходя его стороной. Ретровирусная революция со всеми ее тайнами и открытиями пронеслась у него над головой, не задев даже кончиком крыла. В 1972 году Вайнберг перешел в Массачусетский технологический институт, где изучал вирусы — возбудители рака в крохотной лаборатории, расположенной по соседству с лабораторией Балтимора. «Глава департамента считал меня тупицей, — вспоминал Вайнберг. — Славным, честным и добросовестным, но все равно тупицей». Лаборатория занимала стерильное, скучное помещение в одном из корпусов МТИ, выстроенном в утилитарном стиле 1960-х годов. На все здание приходился один-единственный скрипучий лифт. Река Чарльз, хотя и не видная из окон, зимой выстужала промозглым дыханием институтские дворики. Подвал здания соединялся лабиринтом подземных переходов с душными комнатушками, где делали ключи и чинили оборудование для других лабораторий. Да и сами лаборатории работали, как машины. В науке это чаще звучит оскорблением, чем комплиментом: эффективная, безупречно отлаженная, технически укомплектованная лаборатория обычно подобна механическому оркестру, издающему точнейшие звуки и тона, но не производящему никакой мелодии. К середине 1970-х годов Вайнберг заслужил среди коллег репутацию аккуратного и технически умелого ученого, которому, однако, не хватает направления. Он и сам ощущал, что его работа забуксовала. Ему требовался какой-нибудь простой и ясный вопрос.
Прозрение снизошло на него зимним утром. В феврале 1978 года, по дороге на работу, Вайнберг угодил в сильнейший буран. Автобусы остановились, и Вайнберг в галошах и непромокаемой шляпе отправился по мосту Лонгфелло пешком, осторожно переставляя ноги по мокрому снегу. Снежная пелена заволокла все вокруг, глуша звуки и создавая атмосферу гипнотической тишины. Пересекая застывшую реку, Вайнберг размышлял о ретровирусах, раке и генах рака у человека. Выделить и определить src оказалось несложно из-за того, что у вируса саркомы Рауса всего четыре гена. Геном ретро-вируса переполнен канцерогенами. В раковой же клетке около двадцати тысяч генов. Как обнаружить среди них тот единственный, который и вызывает рак? Онкоген, в силу определения, обладает важной особенностью: он запускает в нормальной клетке процесс бесконтрольного деления. Темин использовал это свойство в своих экспериментах по моделированию рака в чашке Петри, получая «очаги» деления. Размышляя об онкогенах, Вайнберг снова и снова возвращался к этому ключевому свойству. Из двадцати тысяч генов в раковой клетке, рассуждал он, подавляющее большинство генов совершенно нормальны, а меньшинство представляет собой мутировавшие протоонкогены. Представим, что можно взять двадцать тысяч генов раковой клетки всем скопом и распределить их по двадцати тысячам нормальных клеток так, чтобы каждая клетка получила всего один ген. Нормальные, немутированные гены не окажут на клетку-реципиента никакого воздействия. Однако клетка, получившая онкоген, повинуясь этому сигналу, начнет безудержно размножаться. Через десять делений ее потомки образуют на чашке Петри крохотную кучку, а через двадцать делений эта кучка станет вполне заметным «очагом» — раком в его первичном и природном виде. Метель стала для Вайнберга моментом катарсиса. Он наконец избавился от ретровирусов. Если в раковой клетке присутствуют активированные онкогены, то перенос этих генов в нормальные клетки должен заставить их бесконтрольно делиться и размножаться. Десятилетиями ученым требовался вирус саркомы Рауса, чтобы внедрить активированный src в клетку и спровоцировать деление, а Вайнберг придумал, как обойти вирус Рауса, как выяснить, можно ли перенести гены, вызывающие рак, непосредственно из раковых клеток в нормальные. Метель не стихала. Вайнберг перешел мост и остановился на пустынном перекрестке, где одиноко горел зеленый огонек светофора. Исследователь пересек перекресток и зашагал к онкоцентру.
Первой трудностью Вайнберга стала техническая проблема: как перенести ДНК из раковой клетки в популяцию нормальных клеток? На счастье, как раз этой техникой он в совершенстве овладел за предыдущие застойные годы. Выбранный им метод состоял в выделении ДНК из экстрактов раковых клеток: густая хлопьеобразная суспензия напоминала свернувшееся молоко. Затем ДНК разрезали на тысячи кусочков, каждый из которых содержал по одному или два гена. Теперь Вайнбергу требовался переносчик — молекула, которая протащила бы кусочек ДНК через клеточную мембрану. Тут Вайнберг использовал хитроумный трюк. ДНК связывается с фосфатом калия, образуя крошечные белые частицы. Клетки поглощают и переваривают эти частицы, заодно отсоединяя кусочки ДНК от фосфата. Когда Вайнберг сыпал крохотные белые крупинки на слой растущих в чашке Петри нормальных клеток, картина напоминала метель — вихрь генов, явственно представившийся исследователю во время памятной прогулки. Далее Вайнберг придумал простейший эксперимент. После того как фрагменты ДНК будут усвоены клетками, те клетки, что получат онкоген, начнут бесконтрольно делиться, образуя на поверхности чашки очаги разрастания. Надо взять их и выделить кусок ДНК, который индуцировал этот процесс. Таким образом удастся выявить реально действующий онкоген человека. Летом 1979 года Цзяо Ши, студент из лаборатории Вайнберга, начал исследовать геномы пятнадцати разных мышиных раковых клеток в попытке выявить кусок ДНК, который приводил бы к образованию в нормальных клетках очагов деления. Ши по характеру был немногословен, скрытен, уклончив и вспыльчив. Эксперименты свои он оберегал с почти параноидальным пылом. Коллеги вспоминали, как, не сойдясь с Вайнбергом в каком-нибудь вопросе, Ши делал вид, будто не понимает английского — языка, которым вообще-то владел легко и непринужденно. Однако, несмотря на свои причуды и упрямство, Ши был прирожденным перфекционистом. Технику трансфекции ДНК он перенял у своего предшественника и вдобавок обладал внутренним чутьем, инстинктом садовника, помогавшим ему отличать нормальные клетки от аномальных.
Ши выращивал в чашках Петри огромное количество нормальных клеток и еженедельно посыпал их генами, полученными из его выборки раковых клеток. В лаборатории высились груды чашек с трансфицированными клетками. Как и предвидел Вайнберг во время своей знаменательной прогулки над рекой, Ши вскоре получил предварительный, но крайне важный результат. Он обнаружил, что перенос ДНК из раковых клеток в обычные неизменно приводит к образованию очагов деления — доказательство, что таким методом можно обнаружить онкогены[31]. Возбужденные и заинтригованные, Вайнберг и Ши провели более смелый вариант эксперимента. До сих пор они использовали для получения ДНК раковые клетки мышей, теперь же, сменив тактику и объект, перешли на раковые клетки человека. «Мы упорно старались выловить настоящий онкоген, — вспоминал Вайнберг, — и решили отыскать его в человеческом раке». Из онкологического института Даны и Фарбера Ши принес линию раковых клеток, взятых у пациента Эрла Дженсена, заядлого курильщика, умершего от рака мочевого пузыря. ДНК этих клеток разрезали на фрагменты и ввели их в культуру нормальных клеток человека. Ши вернулся к микроскопу, обшаривая чашку за чашкой в поисках очагов деления. Опыт снова удался. Как и в случае мышиной клеточной линии, на чашках появились отчетливо заметные активные очаги. Вайнберг хотел, чтобы Ши как можно быстрее отыскал конкретный ген, превращающий нормальную клетку в раковую. Лаборатория Вайнберга лихорадочно спешила выделить и определить первый природный онкоген человека. Скоро Вайнберг осознал, что в этой гонке у него есть соперники. На другом конце города, в институте Фарбера, бывший студент Темина Джефф Купер также продемонстрировал, что ДНК раковой клетки способна индуцировать трансформацию клеток. То же показал и Майкл Виглер в нью-йоркской лаборатории Колд-Спринг-Харбор. Были у Вайнберга, Купера и Виглера и другие соперники. Мариано Барбасид, испанский исследователь из НИО, тоже обнаружил фрагмент ДНК еще одной линии раковых клеток, способный трансформировать нормальные клетки. К концу зимы 1981 года все четыре лаборатории наперегонки неслись к финишной черте. В начале весны все они обнаружили долгожданный ген.
В 1982 году Вайнберг, Барбасид и Виглер независимо опубликовали свои данные и сравнили результаты. Они обнаружили фантастическое и неожиданное совпадение: все три лаборатории выделили из своих раковых клеток один и тот же фрагмент ДНК, содержащий ген под названием ras [32]. Подобно src, этот ген также присутствовал во всех нормальных клетках. Однако, как и в случае src, в нормальных клетках ген ras функционально отличался от своего двойника, работающего в раковых клетках. В норме он кодировал строго регулируемый белок, который включался и выключался, точно отлаженный выключатель. В раковых же клетках ген ras находился в мутантной форме, как и предсказывали Вармус и Бишоп. Мутированный ген кодировал сущего берсерка — постоянно работающий гиперактивный белок, выключить который было невозможно. Этот мутантный белок подавал клетке непрестанный сигнал делиться без остановки. Это был тот самый, давно дразнивший воображение ученых «природный» онкоген, во плоти и крови. «Когда мы клонируем ген рака, — писал Вайнберг, — мир будет у наших ног». Он не сомневался, что вслед за этим открытием немедленно последуют новые прозрения в теории канцерогенеза, будут разработаны новые терапевтические направления. «Это была прекрасная и несбыточная мечта», — вспоминал Вайнберг впоследствии.
* * *
В 1983 году, через несколько месяцев после того как Вайнберг выделил мутантный ген ras, Рэй Эриксон приехал в Вашингтон получить престижную премию компании «Дженерал моторс» за исследования функций и работы src. Вместе с ним в тот же вечер награждали и Тома Фрея за успехи в лечении лейкемии. Вечер удался на славу: изысканный ужин при свечах, речи и тосты. За накрытыми белыми скатертями столами собрались ученые, врачи и политики, включая многих из бывших ласкеритов[33]. Разговоры вертелись вокруг открытия онкогенов и изобретений лечебной химиотерапии. Две эти главные темы звучали независимо друг от друга, словно бы в двух непересекающихся, замкнутых вселенных — точно так же как на конференции в Хьюстоне десять лет назад. Казалось, премия Фрея за достижения химиотерапии и премия Эриксона за определение функции важнейшего онкогена получены на совершенно разных и не связанных друг с другом поприщах. «Никто из клиницистов не выказал желания пойти навстречу биологам и соединить два полюса знаний о раке», — рассказывал Эриксон. Две половинки рака, причина и лечение, пировали и праздновали вместе, а потом умчались в ночь на разных такси. Открытие ras решило одну из проблем, стоявших перед генетиками рака: из раковой клетки удалось выделить мутантный онкоген. Однако теперь возникла новая проблема. Теория двух ударов Кнудсона выдвинула рискованное предсказание, что клетки ретинобластомы содержат по две инактивированные копии гена Rb. Вайнберг, Виглер и Барбасид доказали правоту Вармуса и Бишопа. Следовало доказать правоту Кнудсона, выделив легендарный ген-супрессор опухолей и продемонстрировав, что при ретинобластоме обе его копии неисправны. Эта проблема шла рука об руку с причудливым концептуальным вывертом. Гены-супрессоры опухолей по природе своей дают о себе знать своим отсутствием. Когда происходит мутация онкогена, он включает клеточный рост, словно бы дает делению зеленый свет, а ген-супрессор опухоли, мутировав, напротив, выключает стоп-сигнал деления. Метод Вайнберга и Цзяо Ши по трансфекции сработал потому, что онкогены заставляют нормальные клетки бесконтрольно делиться, таким образом образуя очаги клеток. Если в клетку перенести антионкоген, он не может создать там «антиочаг». «Как же выловить ген-призрак, который влияет на клетки из-за темной завесы? » — писал Вайнберг. В середине 1980-х годов генетики начали различать за завесой ретинобластомы неясные очертания. Анализируя хромосомы раковых клеток ретинобластомы при помощи излюбленной методики Джанет Роули, генетики показали, что ген Rb обитает в тринадцатой хромосоме. Однако каждая хромосома содержит тысячи генов. Изолировать из этого громадного количества всего один конкретный ген, да еще тем более функционально проявляющийся только тогда, когда он неактивен, казалось совершенно немыслимой задачей. Огромные лаборатории, профессионально оборудованные для поиска раковых генов — лаборатория Вебстера Кавени в Цинциннати, Бренды Галли в Торонто и Вайнберга в Бостоне, — отчаянно пытались придумать стратегию для выделения Rb. Однако все их усилия зашли в тупик. «Мы знали, где Rb обитает, — вспоминал Вайнберг, — но понятия не имели, что он собой представляет». По другую сторону реки Чарльз от лаборатории Вайнберга в охоту на Rb включился еще и Тадеуш Дрыя, офтальмолог, переквалифицировавшийся в генетики. Лаборатория Дрыи располагалась на шестом этаже Массачусетской больницы глазных и ушных заболеваний — в «Глазе», как прозвали это место студенты-медики. Офтальмологическая больница славилась клиническими исследованиями глазных болезней, однако не считалась хорошим ресурсом по части лабораторных испытаний. Институт, где работал Вайнберг, похвалялся новейшими технологиями, армией механизмов, способных секвенировать тысячи образцов ДНК, могущественными флуоресцентными микроскопами, с помощью которых можно заглянуть в самое сердце клетки. «Глаз», с гордостью демонстрирующий коллекцию луп и линз — экспонаты девятнадцатого века в старомодных застекленных деревянных витринах, — отличала демонстративная анахроничность. Дрыя не был типичным генетиком. В середине 1980-х годов, пройдя клиническую практику по офтальмологии в Бостонской больнице, он перебрался на другой конец города в научную лабораторию Детской больницы, чтобы изучать там генетику глазных заболеваний. Для него, офтальмолога, интересующегося раком, выбор объекта напрашивался сам собой: ретинобластома. Но даже Дрыя, оптимист по природе, не решался взяться за поиски Rb. «Бренда Галли и Вебстер Кавини — оба увязли на этом пути, пытаясь клонировать Rb. Время было тяжелое, сплошные разочарования». Дрыя начал охоту за Rb с нескольких ключевых предположений. Он знал, что нормальные клетки человека имеют по две копии каждой хромосомы (кроме половых хромосом) — по одной от каждого родителя: всего двадцать три пары, то есть сорок шесть штук. Таким образом, в каждой нормальной клетке содержится две копии гена Rb в тринадцатой паре хромосом. Если предположить, что теория двух ударов Кнудсона верна, то каждая опухоль глаза будет иметь две независимые дезактивирующие мутации гена Rb, по одной на каждую хромосому. Мутации могут происходить в самых разных видах. Это может быть крошечное изменение в ДНК, активирующее ген, или же глобальная структурная утрата куска гена (делеция), затрагивающая большой кусок хромосомы. Поскольку для возникновения ретинобластомы ген Rb должен быть инактивирован, Дрыя рассудил, что в данном случае мутация представляет собой второй вариант, делецию гена. В конце концов, вырезать большой кусок гена — это самый простой и быстрый способ парализовать его и сделать его неактивным. Дрыя предположил, что в большинстве ретинобластом две делеции в разных копиях гена Rb будут затрагивать разные части гена. Поскольку мутации происходят случайным образом, то получить две одинаковые мутации в обеих хромосомах — все равно что выбросить две шестерки при игре в кости, где у каждой кости сотня граней. Скорее одна делеция ударит, например, по началу гена, а вторая по концу (функциональные последствия в обоих случаях будут одинаковыми — инактивация Rb). То есть в большинстве опухолей два удара будут несимметричны и затронут разные участки хромосом. Тем не менее даже на костях с сотней граней, если кидать их много раз подряд, иногда выпадает двойная шестерка. Дрыя понимал, что изредка будет попадаться опухоль, в которой делеции случились в одной и той же части гена в обеих сестринских хромосомах. В таком случае этого отрезка хромосомы в клетке не будет совсем, ни в каком виде. Если найти метод выявления полностью отсутствующей части тринадцатой хромосомы в опухолевых клетках ретинобластомы, тем самым мгновенно обнаружится и ген Rb. Дрыя остановился на простейшей стратегии: чтобы найти ген с отсутствующей функцией, надо искать отсутствие структуры. Для определения такого пропавшего участка хромосомы Дрые нужны были своего рода структурные вешки по всей длине тринадцатой хромосомы — выстроенные вдоль хромосомы маленькие кусочки ДНК, называемые пробами. Дрыя использовал эти кусочки в такой же «склеивающей» реакции, что проводил Бишоп в 1970-х годах: если в опухолевой ДНК есть парный участок, то пробный кусочек ДНК приклеится к нему, если же нет — не приклеится. Дрыя собрал серию таких проб. Вдобавок он уже располагал и вторым необходимым ресурсом — огромной коллекцией замороженных опухолей. Шансы найти совпадающую в обеих хромосомах делецию были ничтожны, так что предстояло проверить множество образцов. В этом и состояло главнейшее преимущество Дрыи над всеми профессиональными лабораториями Бостона и Хьюстона. Лабораторные исследователи редко покидают свои лаборатории в поисках человеческих образцов, однако у клинициста Дрыи ими был полон холодильник. «Я одержимо запасал опухоли, — рассказывал он с детским восторгом коллекционера. — Распространил среди врачей и пациентов весть, что я интересуюсь случаями ретинобластомы. Каждый раз, как кто-нибудь сталкивался с ретинобластомой, он тут же говорил: „Позовите-ка Дрыю“. Я немедленно приезжал, прилетал или хоть пешком приходил и забирал себе образец. Всех пациентов я знал поименно. Поскольку ретинобластома — семейное заболевание, я звонил им домой, интересовался, не обнаружилось ли ретинобластомы у кого-нибудь из братьев и сестер или еще каких родственников. Иногда я узнавал про опухоль раньше семейного доктора». Неделя за неделей Дрыя извлекал из образцов хромосомы и при помощи проб ДНК анализировал их структуру. Если проба связывалась с хромосомой, на геле оставался след, если этого кусочка не было — не было и сигнала. Как-то утром, прогнав на анализ очередную дюжину опухолей, Дрыя пришел в лабораторию и, держа блот на просвет у окна, с привычным автоматизмом пробегал глазами ряд за рядом, точно читающий нотные записи пианист. В опухоли, результаты которой он смотрел, в обеих хромосомах недоставало одной и той же пробы — он назвал ее НЗ-8. На миг Дрыю бросило в жар от восторга, но тот быстро сменился дурнотой. «Тогда-то я и осознал: ген у нас в руках. Мы нашли ретинобластому». Дрыя определил участок ДНК, отсутствующий в обеих хромосомах. Далее требовалось найти соответствующий участок, присутствующий в нормальных клетках, и таким образом выделить ген Rb. Приближаясь к концу исследований, Дрыя напоминал акробата на последнем, самом опасном отрезке каната. Крошечная лаборатория гудела от напряжения, работая на пределе. Дрые не хватало ни технических средств, ни опыта и умений по части выделения генов. Ему отчаянно требовалась помощь на этом последнем броске. Исследователи в лаборатории Вайнберга тоже охотились за геном ретинобластомы. Перед Дрыей стоял простой выбор: скооперироваться с Вайнбергом или же попытаться выделить ген самому — и проиграть. В вайнбергской лаборатории выделением гена Rb занимался Стив Френд. Веселый молекулярный генетик, наделенный быстрым умом и непринужденной легкостью в общении, Френд как-то вскользь упомянул Дрые, что тоже интересуется Rb. В отличие от Дрыи, работавшего с пополняющейся коллекцией опухолевых тканей, Френд наращивал коллекцию нормальных клеток, в которых ген Rb был цел и невредим. Подход Френда состоял в том, чтобы найти гены, присутствующие в нормальных клетках сетчатки глаза, а потом выявить, какой из них будет деформирован в ретинобластоме, — то есть он двигался навстречу Дрые с другого конца пути. Для Дрыи было очевидно, что эти два подхода идеально дополняют друг друга. Он определил участок ДНК, отсутствующий в опухолях. Сумеют ли Френд с Вайнбергом вытащить из нормальной клетки целый полноразмерный ген? Исследователи договорились о сотрудничестве между лабораториями. Однажды утром 1985 года Дрыя взял пробу НЗ-8 и бегом бросился через мост Лонгфелло, ставший основной трассой онкогенеза, спеша принести образец на лабораторный стол в институте Уайтхед. Френду не потребовалось много времени, чтобы проверить пробу Дрыи. При помощи все той же «склеивающей» реакции ДНК он выявил и выделил из нормальной клетки ген, реагировавший на пробу НЗ-8. Этот изолированный ген, как и предсказывалось, обитал в тринадцатой хромосоме. Проверив ген на своем банке опухолевых образцов, Дрыя обнаружил то, что предположил Кнудсон более десяти лет назад: все клетки ретинобластомы обладали неисправными генами в обеих сестринских хромосомах — два удара, — тогда как у нормальных клеток было по две нормальных копии гена. Ген, выделенный Френдом, без всяких сомнений, оказался именно искомым Rb. В октябре 1986 года Френд, Вайнберг и Дрыя опубликовали результаты в журнале «Нейчур». Статья идеально дополняла предыдущую статью Вайнберга о гене ras — как инь и ян: выделение активированного протоонкогена (ras) и выявление антионкогена (Rb). «Пятнадцать лет назад, — писал Вайнберг, — Кнудсон обеспечил теоретическую базу опухолегенеза ретинобластомы, предположив, что для развития опухоли требуется как минимум два генетических события… Мы выделили (человеческий ген), по всей вероятности, представляющий собой один из примеров подобных генов-супрессоров опухоли». Функции гена Rb в нормальных клетках и по сей день остаются загадкой. Как оказалось, название этому гену дали не совсем подходящее. Ген ретинобластомы, Rb, мутирован не только в редкой глазной опухоли у детей. В начале 1990-х годов, проверив выделенный Дрыей. Френдом и Вайнбергом ген на множестве других типов рака, исследователи обнаружили, что он мутирован еще и при раке легких, костной ткани, пищевода, молочной железы и мочевого пузыря у взрослых. Подобно гену ras, он экспрессируется практически в любой делящейся клетке — и инактивирован при огромном множестве различных злокачественных заболеваний. Таким образом, название «ген ретинобластомы» не отражает все значение этого гена. Ген ретинобластомы кодирует белок, также получивший название Rb и обладающий глубоким молекулярным «карманом». Главная его функция состоит в том, чтобы связывать другие белки и хранить их в своем кармане, тем самым не позволяя им активировать деление клетки. Когда клетка решает, что настало время для деления, она присоединяет к Rb фосфатную группу — этот молекулярный сигнал инактивирует белок и заставляет его выпустить из кармана заточенные там другие белки. Таким образом, Rb выступает при клеточном делении в роли привратника, открывающего шлюзы целого потока ключевых молекулярных событий всякий раз, как деление активируется, и закрывающего эти шлюзы, когда деление завершено. Мутация по гену Rb инактивирует эти функции. В раковой клетке шлюзы открыты все время, а потому она не может прекратить деление.
Клонирование ras и Rb — онкогена и антионкогена — стало переломным моментом в генетике рака. За следующие десять лет, с 1983 по 1993 год, в раковых клетках человека выявили множество других онкогенов и антионкогенов (супрессоров опухолей): myc, neu, fos, ret, akt (онкогены) и р53, VHL, АРС (супрессоры опухолей). Ретровирусы, случайные переносчики онкогенов, отошли на задний план. Теория Вармуса и Бишопа — что онкогены представляют собой активированные гены нормальных клеток — была доказана для многих форм рака. Также широко применима к раку оказалась и теория двух ударов — что гены-супрессоры опухолей должны быть неисправны в обеих сестринских хромосомах. Постепенно вырисовывалась общая концептуальная основа канцерогенеза. По этой теории, раковая клетка представляет собой сломанный, вырвавшийся из-под контроля механизм, в котором онкогены исполняют роль заевших педалей газа, а супрессоры — отказавших тормозов[34]. В конце 1980-х годов из прошлого вынырнуло еще одно направление исследований, принеся с собой щедрый урожай генов, связанных с раком. Со времен заметки де Гувеа от 1872 года о бразильской семье с наследственным глазным раком генетики обнаружили еще несколько семей, передававших рак в генах. Истории этих семей носили сходный и трагический характер: рак преследовал их из поколения в поколение, возникая у родителей, детей и внуков. Во всех семейных историях особенно выделялись две черты. Во-первых, генетики заметили, что спектр рака в этих семьях довольно-таки ограничен и стереотипен: в одной семье постоянно встречался рак толстого кишечника и яичников, в другой — молочной железы и яичников, в третьей — саркомы, лейкемии и глиомы. Во-вторых, в разных семьях часто повторялись одни и те же закономерности, наводя на мысль о некоем общем генетическом синдроме. При синдроме Линча, впервые описанном выдающимся онкологом Генри Линчем на примере семьи из Небраски, из поколения в поколение повторялись раки толстого кишечника, яичников, желудка и печени. При синдроме Ли-Фраумени встречались остеосаркомы и саркомы внутренних органов, лейкемии и опухоли мозга. При помощи самых современных методик молекулярной генетики исследователи 1980–1990-х годов сумели клонировать и определить некоторые из этих связанных с раком генов. Многие из семейных генов рака, подобно Rb, оказались супрессорами опухолей (хотя иногда обнаруживались и онкогены). Большинство таких наследственных синдромов встречалось крайне редко. Однако иной раз генетики обнаруживали ген предрасположенности к раку, представленный в популяции достаточно часто. Пожалуй, самым поразительным из таких открытий стал ген BRCA-1, существование которого заподозрила генетик Мэри Клэр-Кинг, а подтвердила группа Марка Сколника при фармацевтической компании «Мириад дженетик». Этот ген определяет высокую степень риска рака молочной железы и яичников и в некоторых популяциях встречается у одного процента женщин — то есть является самым распространенным геном, связанным с раком у людей. Мы еще вернемся к этому гену чуть позже. Таким образом, в начале 1990-х годов открытия онкологии перешли от куриных опухолей Рауса к настоящим ракам у человека. Ревнители чистоты жанра все еще продолжали сетовать. Призрак Роберта Коха по-прежнему преследовал генную теорию рака. Кох постулировал, что тот или иной фактор считается причиной болезни тогда и только тогда, если: (1) присутствует в организме больного; (2) его можно выделить из больного организма; и (3) при перенесении из организма больного вторичному хозяину тоже вызывает заболевание. Таким образом, онкогены удовлетворяли двум первым условиям: присутствовали в раковых клетках и могли быть оттуда выделены. Однако никто еще не доказал, что ген рака сам по себе способен вызывать опухоль у животных. В середине 1980-х годов серия выдающихся экспериментов позволила генетикам рака наконец-то выполнить последнее условие Коха. В 1984 году биологи, работавшие со стволовыми клетками, разработали новую методику, при помощи которой можно было ввести чужеродные гены в мышиный эмбрион на ранней стадии развития, а потом вырастить из этого эмбриона настоящую живую мышь. Таким образом, ученые научились получать трансгенных мышей, у которых один или несколько генов были изменены искусственным образом. Генетики рака ухватились за новые возможности. В число первых генов, введенных таким мышам, вошел и c-myc, онкоген, обнаруженный в клетках лимфомы. Используя методику выведения трансгенных мышей, группа Филиппа Ледера из Гарварда хитроумным способом изменила у мышей ген c-myc: так чтобы ген повышенно экспрессировался не во всем организме мыши, а только в молочной железе. (Ген myc нельзя активировать во всех клетках, иначе эмбрион превратится в шар беспорядочно делящихся клеток, а потом погибнет. Причины этого непонятны. Единственным способом активировать myc в живой мыши было ограничение активации гена до уровня отдельной ткани. Поскольку лаборатория Ледера изучала рак молочной железы, то он и выбрал именно эту ткань. ) Ледер красноречиво назвал полученных им мышей онкомышами и в 1988 году запатентовал их. Мыши стали первым запатентованным животным в истории. Ледер ожидал, что его трансгенные мыши поголовно заболеют раком, однако, к его удивлению, у онкомышей и рак оказался мышиным. Несмотря на присутствие в хромосомах агрессивного онкогена, у подопытных животных возникали лишь небольшие односторонние опухоли, да и то ближе к концу жизни. Что еще более удивительно, у мышей рак возникал только после беременности. Напрашивалось предположение: для полной трансформации клеток молочной железы требуются не только наследственные факторы, но и факторы окружающей среды, такие как гормоны. «Активного гена myc еще недостаточно для развития опухоли, — писал Ледер. — Будь его достаточно, мы ожидали бы однотипного двустороннего образования опухолевых масс в молочных железах у всех пяти подопытных животных. Однако наши результаты наводят на мысль о двух дополнительных условиях. Одно из них, по всей вероятности, — последующее трансформирующее событие… второе — связанное с беременностью изменение гормонального фона, пока еще только гипотетически предполагаемое на основании этих первых исследований». Для исследования роли других онкогенов и влияния внешних факторов Ледер создал вторую линию онкомышей, в хромосомы клеток молочной железы у которых были введены два активированных протоонкогена, ras и myc. В считанные месяцы у мышей развились множественные опухоли молочной железы. Таким образом, условие о гормональном фоне, обусловленном беременностью, было частично преодолено. Однако у мышей по-прежнему возникали лишь отдельные отчетливо различимые клоны раковых клеток. У каждой мыши активированными генами ras и myc обладали миллионы клеток молочной железы, получившие мощнейшие онкогены, однако настоящие опухоли дали лишь отдельные клетки. Все же это был знаковый, эпохальный эксперимент: у животных научились искусственно вызывать рак. «Генетики, — вспоминает ученый Клифф Табин, — пересекли очередную границу. Теперь они не просто возились в лабораториях с генами, путями патогенеза и комками наросшей культуры — теперь они имели дело с настоящими опухолями у животных». Давние придирки Пейтона Рауса — что никто и никогда не сумел получить рак в живом организме, изменив определенный набор генов клетки, — наконец-то утратили былую актуальность и остроту.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|