Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Правило Тициуса— Боде




Расстояния от планет Солнечной системы до Солнца возрастают согласно простому арифметическому правилу

 

Есть что-то такое в нумерологии, что буквально завораживает людей. Будучи ученым, занимающимся общественно-просветительской деятельностью, я регулярно получаю письма от людей, нашедших очередную «разгадку» какой-либо тайны Вселенной посредством анализа последовательности десятичных знаков в записи числа % или массы одной из элементарных частиц. Логика у них простая: если найдена какая-то закономерность в числовой последовательности, благодаря которой удается объяснить какое-либо природное явление, значит, за этим кроется что-то фундаментальное. Надуманным «законам» подобного рода в этой книге уделяется мало внимания, однако для правила Тициуса—Боде, хотя оно и относится к вышеупомянутой категории, следует сделать исключение (ничего предосудительного в том, как оно изначально было выведено и проверено, нет; просто со временем выяснилось, что оно не всегда работает, — и мы это увидим).

В 1766 году немецкий астроном и математик Иоганн Тициус заявил, что выявил простую закономерность в нарастании радиусов околосолнечных орбит планет. Он начал с последовательности 0, 3, 6, 12, в которой каждый следующий член образуется путем удвоения предыдущего (начиная с 3; то есть 3 х 2П, где п = 0, 1, 2, 3, ...), затем добавил к каждому члену последовательности 4 и поделил полученные суммы на 10. В итоге получились весьма точные предсказания (см. таблицу) расстояний известных на то время планет Солнечной системы от Солнца в астрономических единицах (1 а.е. равна среднему расстоянию от Земли до Солнца).

 

Радиусы планет (в астрономических единицах), предсказанные правилом Тициуса—Боде (средняя колонка). Для сравнения даны их реальные радиусы (правая колонка)

Планета Согласно правилу Тициуса—Боде Реальный радиус
Меркурий 0,4 0,39
Венера 0,7 0,72
Земля 1,0 1,00 (по определению)
Марс 1,6 1,52
«недостающая планета» 2,8  
Юпитер 5,2 5,2
Сатурн 9,5

Совпадение прогноза с результатом действительно впечатляет, особенно если учесть, что открытый лишь в 1781 году Уран также вписался в предложенную Тициусом схему: по Тициусу — 19,6 а.е., фактически — 19,2 а.е. Открытие Урана подогрело интерес к «закону», прежде всего к таинственному провалу на удалении 2,8 а.е. от Солнца. Там, между орбитами Марса и Юпитера, должна быть планета — считали все. Неужели она столь мала, что ее невозможно обнаружить в телескопы?

В 1800 году даже была создана группа из 24 астрономов, ведших круглосуточные ежедневные наблюдения на нескольких самых мощных в ту эпоху телескопах, они даже дали своему проекту громкое название «Небесная стража», но увы... Первую

 

малую планету, обращающуюся по орбите между Марсом и Юпитером, открыли не они, а итальянский астроном Джузеппе Пиацци (вішерре Ріа77І, 1746-1826), и произошло это не когда-нибудь, а в новогоднюю ночь 1 января 1801 года, и открытие это ознаменовало наступление XIX столетия. Новогодний подарок оказался удален от Солнца на расстояние 2,77 а.е. Однако диаметр этого космического объекта (933 км) явно не позволял счесть ее искомой крупной планетой. Однако в течение всего нескольких лет после открытия Пиацци было обнаружено еще несколько малых планет, которые назвали астероидами, и сегодня их насчитывается много тысяч. Подавляющее большинство из них обращается по орбитам, близким к предсказываемым правилом Тициуса—Воде, и по последним гипотезам они представляют собой «строительный материал», который так и не сформировался в планету (см. гипотеза

газопылевого облака).

Немецкий астроном Иоганн Воде, будучи под большим впечатлением от выводов Тициуса, включил их в свой учебник по астрономии, изданный в 1772 году. Именно благодаря его роли как популяризатора его имя возникло в названии правила. Иногда его даже несправедливо называют просто правилом Воде.

И как реагировать человеку, столкнувшемуся с такой «магией» последовательности чисел? Я всегда рекомендую задающимся подобными вопросами придерживаться умного совета, который дал мне в свое время умудренный опытом преподаватель теории вероятностей и статистики. Он часто приводил пример поля для гольфа. «Предположим, — рассуждал он, — что мы задались целью рассчитать вероятность того, что шар для гольфа приземлится на точно заданную травинку. Такая вероятность будет практически нулевой. Но после того, как мы ударили клюшкой по шару, шару ведь надо куда-то упасть. И рассуждать о том, почему шар упал именно на эту травинку, бессмысленно, поскольку, если бы он упал не на нее, он упал бы на одну из соседних».

Применительно к правилу Тициуса—Воде: шесть цифр, входящих в эту формулу и описывающих удаление планет от Солнца, можно уподобить шести шарам для гольфа. Представим себе вместо травинок всевозможные арифметические комбинации чисел, которые призваны дать результаты для расчета радиусов орбит. Из бесчисленного множества формул (а их можно насочинять даже больше, чем имеется травинок на поляне для гольфа) обязательно найдутся и такие, что по ним будут получены результаты, близкие к предсказываемым правилом Тициуса—Воде. И то, что правильные предсказания дала именно их формула, а не чья-либо еще, не более чем игра случая, и к настоящей науке это «открытие» отношения не имеет.

В реальной жизни все оказалось даже проще, и к статистическим доводам для опровержения правила Тициуса—Воде прибегать не пришлось. Как это часто бывает, ложная теория была опровергнута новыми фактами, а именно открытием Нептуна и Плу-

 

Иоганн Боде, соавтор «закона», который оказался чистым совпадением

 

тона. Нептун обращается по очень неправильной, с точки зрения Тициуса—Воде, орбите (прогноз для его радиуса 38,8 а.е., в действительности — 30,1 а.е.). Что касается Плутона, то его орбита вообще лежит в плоскости, заметно отличающейся от орбит других планет, и характеризуется значительным эксцентриситетом, так что само упражнение с применением правила становится бессмысленным.

Так что же, выходит, правило Тициуса—Воде относится к разряду псевдонаучных? Не думаю. И Тициус, и Воде искренне пытались отыскать математическую закономерность в строении Солнечной системы, и ученые продолжали и продолжают заниматься поисками подобного рода. Проблема в том, что ни тот, ни другой не пошли дальше игры чисел и не попытались отыскать физическую причину того, почему орбиты ближних планет подчиняются подмеченной ими закономерности. А без физического обоснования «законы» и «правила» подобного рода остаются чистой нумерологией — и, как показывают имеющиеся сегодня данные, весьма некорректной нумерологией.

 

ИОГАНН ЭЛЕРТ ВОДЕ (Johann Elert Bode, 1748-1826) — немецкий астроном и математик, родился в Гамбурге. Астроном-самоучка, первый трактат по астрономии опубликовал в возрасте 17 лет. С 1772 года и до самой своей смерти — главный редактор «Астрономического ежегодника» (Astronomisches Jahrbuch) Берлинской академии наук, превративший его в прибыльное и престижное издание. В 1781 году предложил для открытой Вильямом Гер-шелем (William Herschel) новой планеты название Уран. С 1786 года — директор Астрономической обсерватории Берлинской академии. Составитель звездных атласов, которые переиздаются до наших дней. Самый известный из них — «Уранография» (Uranographia, 1801), который до сих пор считается лучшим и самым красочным звездным атласом в истории человечества. Автор геометрических границ между созвездиями,





Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:



©2015- 2021 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.