Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Зарождение молекулярно-кинети -ческой теории.




Уравнение Клапейрона— Клаузиуса

Теплота испарения возрастает по мере роста температуры и давления пара

 

1761 • фазовые переходы

1798 • механическая теория теплоты

1834 • УРАВНЕНИЕ

КЛАПЕЙРОНА— КЛАУЗИУСА

1849 • молекулярно-

Кинетическая теория

Как МЫ Знаем ИЗ молекулярно-кинетической теории,

атомы или молекулы в жидкостях и газах находятся в состоянии постоянного движения. Время от времени отдельные молекулы жидкости, движущиеся достаточно быстро, могут «срываться» с ее поверхности. Таким образом, над любой жидкостью какое-то количество молекул данного вещества будет находиться в виде пара. Давление этих молекул, если нет посторонних примесей, называется давлением пара этого вещества. Иногда можно почувствовать это присутствие пара над жидкостью — вспомните характерное ощущение влажности на берегу моря или океана.

Нам также известно, что для перевода вещества из жидкого в газообразное состояние (см. фазовые переходы) нужно затратить некоторую энергию. Эта энергия называется теплотой испарения, или теплотой парообразования. Уравнение Клапейрона—Клаузиуса как раз и описывает отношение между теплотой испарения H, давлением пара p и температурой T вещества:

lnp = HIRT + константа,

где lnp — натуральный логарифм, взятый от величины давления пара, а R — постоянная ридберга. Температура T измеряется в кельвинах.

Первым эту зависимость в 1834 году вывел инженер-конструктор паровых машин Бенуа Клапейрон. Естественно, в силу его специальности, Клапейрона интересовала прежде всего теплота парообразования, и он использовал свое уравнение преимущественно в инженерно-прикладных целях. Для науки же уравнение теплоты фазового перехода было повторно открыто почти два десятилетия спустя Рудольфом Клаузиусом, автором формулировки второго начала термодинамики.

Чаще всего уравнение Клапейрона—Клаузиуса используется для простого расчета или измерения теплоты испарения различных веществ. Измеряя давление пара при различных температурах и нанося его на график, по одной оси которого откладывается значение lnp, а по другой — величина 1/Т, ученые по полученной линейной зависимости (углу наклона прямой) определяют теплоту испарения вещества.

 

БЕНУА ПОЛЬ ЭМИЛЬ КЛАПЕЙРОН

(Benoît Paul Émile Clapeyron, 1799-1864) — французский физик и инженер. Родился Париже. Окончил Политехническую школу и Школу минного дела. В 1820-1830 гг. работал в Институте инженеров путей сообщения в Петербурге. По возвращении во Францию стал профессором Школы мостов и дорог в Париже. Прославился как проектировщик железных дорог, конструктор железнодорожных мостов и паровозов. Доказал «теорему о трех моментах», используемую для расчета несущих конструкций с тремя и более точками опоры. Однако самый большой вклад в науку Клапейрон внес благодаря изучению тепловых процессов, за что и был избран действительным членом Академии наук Франции.

РУДОЛЬФ ЮЛИУС ЭМАНУЭЛЬ КЛАУЗИУС (Rudolf Julius Emanuel Clausius, 1822-88) — немецкий физик. Родился в Кёслине (ныне Кошалин, Польша) в семье пастора. Учился в частной школе, директором которой был его отец. В 1848 году окончил Берлинский университет. По окончании университета предпочел физику и математику истории, которую первоначально изучал. Преподавал в Берлине и Цюрихе, занимал кафедру профессора физики университетов в Цюрихе, Вюрцбурге

И Бонне. С 1884 года — ректор Боннского университета. Главные работы Клаузиуса посвящены основам термодинамики и кинетической теории газов. К сожалению, тяжелые ранения, полученные во время службы добровольцем в качестве санитара во время Франко-прусской войны, помешали Клаузиусу в полной мере реализовать свой научный потенциал. Тем не менее, уже после войны и ранений, именно он сформулировал второе начало термодинамики в его современном виде.

Уравнение состояния идеального газа

Термодинамические характеристики идеального газа описываются одним простым уравнением

 

АТОМНАЯ ТЕОРИЯ СТРОЕНИЯ ВЕЩЕСТВА

ЗАКОН

 
 

БОЙЛЯ—МАРИОТТА ЗАКОН ШАРЛЯ МЕХАНИЧЕСКАЯ

 

ТЕОРИЯ ТЕПЛОТЫ БРОУНОВСКОЕ

 

ДВИЖЕНИЕ УРАВНЕНИЕ

состояния

 

ИДЕАЛЬНОГО ГАЗА

МОЛЕКУЛЯРНО-

КИНЕТИЧЕСКАЯ

* Эта формула была получена в 1874 году Д.И. Менделеевым путем объединения закона Авогадро и общего газового закона (pV/T = const), сформулированного в 1834 году Бенуа Полем Эмилем Клапейроном. Поэтому этот закон (в Европе, по крайней мере) принято называть законом Менделеева—Клапейрона. По существу, этот закон позволил ввести все ранее сделанные эмпирические заключения о характере поведения газов в рамки новой молекулярно-кине-тической теории. — Примечание переводчика

ТЕОРИЯ

Математическая запись универсального газового закона проста:

р¥ = пЯТ *.

Она содержит основные характеристики поведения газов: р, V и Т — соответственно давление, объем и абсолютная температура газа (в градусах Кельвина), Я — универсальная газовая постоянная, общая для всех газов, а п — число, пропорциональное числу молекул или атомов газа (так называемое число молей газа — см. закон авогадро).

Чтобы понять, как работает этот закон, давайте представим, что температура газа постоянна. В этом случае в правой части уравнения получается константа. Значит, произведение давления и объема при неизменной температуре оказывается неизменным. Повышение давления сопровождается уменьшением объема, и наоборот. Это не что иное, как закон бойля—мариотта — одна из первых экспериментально полученных формул, описывающих поведение газов. С другой стороны, при постоянном давлении (например, внутри воздушного шарика, где давление газа равно атмосферному) повышение температуры сопровождается увеличением объема. А это — закон шарля, другая экспериментальная формула поведения газов. закон авогадро и закон дальтона также являются следствиями универсального газового закона.

Этот закон представляет собой то, что в физике принято называть уравнением состояния вещества, поскольку он описывает характер изменения свойств вещества при изменении внешних условий. Строго говоря, этот закон в точности выполняется только для идеального газа. Идеальный газ представляет собой упрощенную математическую модель реального газа: молекулы считаются движущимися хаотически, а соударения между молекулами и удары молекул о стенки сосуда — упругими, то есть не приводящими к потерям энергии в системе. Такая упрощенная модель очень удобна, поскольку позволяет обойти очень неприятную трудность — необходимость учитывать силы взаимодействия между молекулами газа. И это себя оправдывает, поскольку в природных условиях поведение большинства реальных газов практически не отличается от поведения идеального газа — отклонения в поведении практически всех природных газов, например атмосферного азота и кислорода, от поведения идеального газа не превышают 1%. Это позволяет ученым спокойно включать уравнение состояния идеального газа даже в весьма сложные теоретические расчеты. Например, астрономы при моделировании горячих звезд обычно считают вещество звезды идеальным газом и весьма точно прогнозируют давления и температуры внутри них. (Заметьте, что вещество внутри звезды ведет себя как идеальный газ, хотя его плотность несопоставимо выше плотности любого вещества в земных условиях. А дело в том, что вещество звезды состоит

 

из полностью ионизированных ядер водорода и гелия — то есть из частиц значительно меньшего диаметра, чем диаметр атомов земных газов.) В будущем, по мере совершенствования теоретических методов, возможно, будут выведены более точные уравнения для описания состояния реальных газов с учетом их характеристик на молекулярном уровне.

 

 
 

Уравнение Шрёдингера

Дуальная

корпускулярно-

волновая природа

квантовых частиц

описывается

дифференциальным

 

уравнением

Излучение


 

соотношение де бройля

 

квантовая механика

 

УРАВНЕНИЕ ШРЁДИНГЕРА

 

 

Черного тела

Согласно фольклору, столь распространенному среди физиков, случилось это так: в 1926 году физик-теоретик по имени Эрвин Шрёдингер выступал на научном семинаре в Цюрихском университете. Он рассказывал о странных новых идеях, витающих в воздухе, о том, что объекты микромира часто ведут себя скорее как волны, нежели как частицы. Тут слова попросил пожилой преподаватель и сказал: «Шрёдингер, вы что, не видите, что все это чушь? Или мы тут все не знаем, что волны — они на то и волны, чтобы описываться волновыми уравнениями?» Шрёдингер воспринял это как личную обиду и задался целью разработать волновое уравнение для описания частиц в рамках квантовой механики — и с блеском справился с этой задачей.

Тут необходимо сделать пояснение. В нашем обыденном мире энергия переносится двумя способами: материей при движении с места на место (например, едущим локомотивом или ветром) — в такой передаче энергии участвуют частицы — или волнами (например, радиоволнами, которые передаются мощными передатчиками и ловятся антеннами наших телевизоров). То есть в макромире, где живем мы с вами, все носители энергии строго подразделяются на два типа — корпускулярные (состоящие из материальных частиц) или волновые. При этом любая волна описывается особым типом уравнений — волновыми уравнениями. Все без исключения волны — волны океана, сейсмические волны горных пород, радиоволны из далеких галактик — описываются однотипными волновыми уравнениями. Это пояснение нужно для того, чтобы было понятно, что, если мы хотим представить явления субатомного мира в терминах волн распределения вероятности (см. квантовая механика), эти волны также должны описываться соответствующим волновым уравнением.

Шрёдингер применил к понятию волн вероятности классическое дифференциальное уравнение волновой функции и получил знаменитое уравнение, носящее его имя. Подобно тому как обычное уравнение волновой функции описывает распространение, например, ряби по поверхности воды, уравнение Шрёдингера описывает распространение волны вероятности нахождения частицы в заданной точке пространства. Пики этой волны (точки максимальной вероятности) показывают, в каком месте пространства скорее всего окажется частица. Хотя уравнение Шрёдингера относится к области высшей математики, оно настолько важно для понимания современной физики, что я его все-таки здесь приведу — в самой простой форме (так называемое одномерное стационарное уравнение Шрёдингера). Вышеупомянутая волновая функция распределения вероятности, обозначаемая греческой буквой у|/ («пси»), является решением следующего дифференциального уравнения (ничего страшного, если оно вам непонятно; главное —

 

примите на веру, что это уравнение свидетельствует о том, что вероятность ведет себя как волна):

д?ш 8%2ш,„,А

а£+—(Е - и) ч>=o,

где х — расстояние, к — постоянная планка, а т, Е и и — соответственно масса, полная энергия и потенциальная энергия частицы.

Картина квантовых событий, которую дает нам уравнение Шрёдингера, заключается в том, что электроны и другие элементарные частицы ведут себя подобно волнам на поверхности океана. С течением времени пик волны (соответствующий месту, в котором скорее всего будет находиться электрон) смещается в пространстве в соответствии с описывающим эту волну уравнением. То есть то, что мы традиционно считали частицей, в квантовом мире ведет себя во многом подобно волне.

Когда Шрёдингер впервые опубликовал свои результаты, в мире теоретической физики разразилась буря в стакане воды. Дело в том, что практически в то же время появилась работа современника Шрёдингера — Вернера Гейзенберга (см. принцип неопределенности гейзенберга), в которой автор выдвинул концепцию «матричной механики», где те же задачи квантовой механики решались в другой, более сложной с математической точки зрения матричной форме. Переполох был вызван тем, что ученые попросту испугались, не противоречат ли друг другу два в равной мере убедительных подхода к описанию микромира. Волнения были напрасны. Сам Шрёдингер в том же году доказал полную эквивалентность двух теорий — то есть из волнового уравнения следует матричное, и наоборот; результаты же получаются идентичными. Сегодня используется в основном версия Шрёдингера (иногда его теорию называют «волновой механикой»), так как его уравнение менее громоздкое и его легче преподавать.

Однако представить себе и принять, что нечто вроде электрона ведет себя как волна, не так-то просто. В повседневной жизни мы сталкиваемся либо с частицей, либо с волной. Мяч — это частица, звук — это волна, и все тут. В мире квантовой механики все не так однозначно. На самом деле — и эксперименты это вскоре показали — в квантовом мире сущности отличаются от привычных нам объектов и обладают другими свойствами. Свет, который мы привыкли считать волной, иногда ведет себя как частица (которая называется фотон), а частицы вроде электрона и протона могут вести себя как волны (см. принцип дополнительности).

Эту проблему обычно называют двойственной, или дуальной, корпускулярно-волновой природой квантовых частиц, причем свойственна она, судя по всему, всем объектам субатомного мира (см. теорема белла). Мы должны понять, что в микромире наши обыденные интуитивные представления о том, какие формы может принимать материя и как она себя может вести, просто неприме

 

нимы. Сам факт, что мы используем волновое уравнение для описания движения того, что привыкли считать частицами, — яркое тому доказательство. Как уже отмечалось во введении, в этом нет особого противоречия. Ведь у нас нет никаких веских оснований полагать, будто то, что мы наблюдаем в макромире, должно с точностью воспроизводиться на уровне микромира. И тем не менее дуальная природа элементарных частиц остается одним из самых непонятных и тревожащих аспектов квантовой механики для многих людей, и не будет преувеличением сказать, что все беды начались с Эрвина Шрёдингера.

 


ЭРВИН ШРЁДИНГЕР (Erwin Schroedinger, 1887-1961) — австрийский физик-теоретик. Родился в Вене в семье богатого промышленника, питавшего интерес к наукам; получил хорошее домашнее образование. Учась в Венском университете, Шрёдингер до второго курса не посещал лекций по теоретической физике, однако докторскую диссертацию защитил именно по этой специальности. В годы Первой мировой войны служил офицером в артиллерийских войсках, но и тогда находил время для изучения новых статей Альберта Эйнштейна.

После войны, сменив должности в нескольких университетах, Шрё-дингер обосновался в Цюрихе. Там он и разработал свою теорию волновой механики, которая и поныне является фундаментальной основой всей современной квантовой механики. В 1927 году занял должность завкафедрой теоретической физики Берлинского университета, сменив на этом посту Макса Планка. Будучи последовательным антифашистом, Шрёдингер в 1933 году эмигрировал в Великобританию, стал профессором Оксфордского университета и в том же году получил Нобелевскую премию по физике.

Тоска по родине, однако, заставила Шрёдингера в 1936 году вернуться в Австрию, в город Грац, где он приступил к работе в местном университете. После аншлюса Австрии в марте 1938 года Шрёдингер был уволен без

Предупреждения и поспешно вернулся в Оксфорд, успев взять с собой лишь минимум личных вещей. За этим последовала цепочка буквально детективных событий. Эймон де Валера (Eamon de Valera), премьер-министр Ирландии, в свое время был профессором математики в Оксфорде. Желая заполучить великого ученого к себе на родину, де Валера распорядился о строительстве специально под него Института фундаментальных исследований в Дублине. Пока институт строился, Шрёдингер принял приглашение прочитать курс лекций в Генте (Бельгия). Когда в 1939 году разразилась Вторая мировая война и Бельгия была молниеносно оккупирована фашистскими войсками, Шрёдингер неожиданно для себя оказался застигнутым врасплох в стане врага. Тут-то ему на выручку и пришел де Валера, снабдив ученого письмом о благонадежности, по которому Шрёдингеру удалось выехать в Ирландию. В Дублине австриец оставался до 1956 года, после чего вернулся на родину, в Вену, чтобы возглавить специально созданную для него кафедру.

В 1944 году Шрёдингер опубликовал книгу «Что такое жизнь?», которая сформировала мировоззрение целого поколения ученых, вдохновив их видением физики будущего как науки, незапятнанной военным применением ее достижений. В этой же книге ученый предсказал существование генетического кода, скрытого в молекулах жизни.

Уравнения Максвелла

Все

электромагнитные явления описываются системой из четырех уравнений

 

1785 ^ закон кулона

1820 ^ закон био—савара

1831 ^ законы

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...