Сенсорные системы (анализаторы) мозга. Х
Сенсорной системой (анализатором, по И. П. Павлову) называют часть нервной системы, состоящую из воспринимающих элементов — сенсорных рецепторов, получающих стимулы из внешней или внутренней среды, нервных путей, передающих информацию от рецепторов в мозг, и тех частей мозга, которые перерабатывают эту информацию. Таким образом, сенсорная система вводит информацию в мозг и анализирует ее.
Сенсорная система выполняет следующие основные функции, или операции, с сигналами: 1) обнаружение; 2) различение; 3) передачу и преобразование; 4) кодирование; 5) детектирование признаков; 6) опознание образов. Обнаружение и первичное различение сигналов обеспечивается рецепторами, а детектирование и опознание сигналов — нейронами коры больших полушарий. Передачу, преобразование и кодирование сигналов осуществляют нейроны всех слоев сенсорных систем.
у человека различают зрительные, слуховые, обонятельные, вкусовые, осязательные рецепторы, термо-, проприо- и вестибулорецепторы (рецепторы положения тела и его частей в пространстве) и рецепторы боли. По характеру контакта со средой рецепторы делятся на дистантные, получающие информацию на расстоянии от источника раздражения (зрительные, слуховые и обонятельные), и контактные — возбуждающиеся при непосредственном соприкосновении с раздражителем (вкусовые, тактильные). В зависимости от природы раздражителя, на который они оптимально настроены, рецепторы могут быть разделены на фоторецепторы, механорецепторы, к которым относятся слуховые, вестибулярные рецепторы, и тактильные рецепторы кожи, рецепторы опорно-двигательного аппарата, барорецепторы сердечно-сосудистой системы; хеморецепторы, включающие рецепторы вкуса и обоняния, сосудистые и тканевые рецепторы; терморецепторы (кожи и внутренних органов, а также центральные термочувствительные нейроны); болевые (ноцицептивные) рецепторы.
Все рецепторы делятся на первично-чувствующие и вторично-чувствующие. К первым относятся рецепторы обоняния, тактильные и проприорецепторы. Они различаются тем, что преобразование энергии раздражения в энергию нервного импульса происходит у них в первом нейроне сенсорной системы. К вторично-чувствующим относятся рецепторы вкуса, зрения, слуха, вестибулярного аппарата. У них между раздражителем и первым нейроном находится специализированная рецепторная клетка, не генерирующая импульсы. Таким образом, первый нейрон возбуждается не непосредственно, а через рецепторную (не нервную) клетку.
Передача и преобразование сигналов. Процессы преобразования и передачи сигналов в сенсорной системе доносят до высших центров мозга наиболее важную (существенную) информацию о раздражителе в форме, удобной для его надежного и быстрого анализа.
Ограничение избыточности информации и выделение существенных признаков сигналов. Зрительная информация, идущая от фоторецепторов, могла бы очень быстро насытить все информационные резервы мозга. Избыточность сенсорных сообщений ограничивается путем подавления информации о менее существенных сигналах. Менее важно во внешней среде то, что неизменно либо изменяется медленно во времени и в пространстве. Например, на сетчатку глаза длительно действует большое световое пятно. Чтобы не передавать все время в мозг информацию от всех возбужденных рецепторов, сенсорная система пропускает в мозг сигналы только о начале, а затем о конце раздражения, причем до коры доходят сообщения только от рецепторов, которые лежат по контуру возбужденной области.
Кодирование информации. Кодированием называют совершаемое по определенным правилам преобразование информации в условную форму — код. В сенсорной системе сигналы кодируются двоичным кодом, т. е. наличием или отсутствием электрического импульса в тот или иной момент времени.
Опознание образов. Это конечная и наиболее сложная операция сенсорной системы. Она заключается в отнесении образа к тому или иному классу объектов, с которыми ранее встречался организм, т. е. в классификации образов. Синтезируя сигналы от нейронов-детекторов, высший отдел сенсорной системы формирует «образ» раздражителя и сравнивает его с множеством образов, хранящихся в памяти. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм. В результате этого происходит восприятие, т. е. мы осознаем, чье лицо видим перед собой, кого слышим, какой запах чувствуем.
Зрительная система
Зрительная система дает мозгу более 90% сенсорной информации. Зрение — многозвеньевой процесс, начинающийся с проекции изображения на сетчатку. Затем происходят возбуждение фоторецепторов, передача и преобразование зрительной информации в нейронных слоях зрительной системы, а заканчивается зрительное восприятие принятием высшими корковыми отделами этой системы решения о зрительном образе.
Аккомодацией называют приспособление глаза к ясному видению объектов, удаленных на разное расстояние. Главную роль в аккомодации играет хрусталик, изменяющий свою кривизну и, следовательно, преломляющую способность. Для нормального глаза молодого человека дальняя точка ясного видения лежит в бесконечности. Ближайшая точка ясного видения находится на расстоянии 10 см от глаза.
Старческая дальнозоркость. Хрусталик с возрастом теряет эластичность, и при изменении натяжения цинновых связок его кривизна меняется мало. Близкие предметы при этом видны плохо. Близорукость. лучи от далекого объекта сфокусируются не на сетчатке, а перед ней, в стекловидном теле. Дальнозоркость. лучи от далекого объекта фокусируются не на сетчатке, а за ней.. Астигматизм. неодинаковое преломление лучей в разных направлениях (например, по горизонтальному и вертикальному меридиану).
Глазное яблоко имеет шарообразную форму, что облегчает его повороты для наведения на рассматриваемый объект. На пути к светочувствительной оболочке глаза (сетчатке) лучи света проходят через несколько прозрачных сред — роговицу, хрусталик и стекловидное тело. Определенная кривизна и показатель преломления роговицы и в меньшей мере хрусталика определяют преломление световых лучей внутри глаза.
Зрачком называют отверстие в центре радужной оболочки, через которое лучи света проходят внутрь глаза. Зрачок повышает четкость изображения на сетчатке, увеличивая глубину резкости глаза. Если прикрыть глаз от света, а затем открыть его, то расширившийся при затемнении зрачок быстро сужается («зрачковый рефлекс»). Мышцы радужной оболочки изменяют величину зрачка, регулируя поток света, попадающий в глаз. Предельное изменение диаметра зрачка изменяет его площадь примерно в 17 раз. При освещении одного глаза зрачок другого тоже суживается; такая реакция называется содружественной.
Сетчатка представляет собой внутреннюю светочувствительную оболочку глаза. Здесь расположены два вида фоторецепторов (палочковые и колбочковые: Колбочки функционируют в условиях больших освещенностей, они обеспечивают дневное и цветовое зрение; намного более светочувствительные палочки ответственны за сумеречное зрение) и несколько видов нервных клеток. Все перечисленные нейроны сетчатки с их отростками образуют нервный аппарат глаза, который не только передает информацию в зрительные центры мозга, но и участвует в ее анализе и переработке. Поэтому сетчатку называют частью мозга, вынесенной на периферию. Место выхода зрительного нерва из глазного яблока — диск зрительного нерва, называют слепым пятном. Оно не содержит фоторецепторов и поэтому нечувствительно к свету. Мы не ощущаем наличия «дыры» в сетчатке. Из сетчатки зрительная информация по волокнам зрительного нерва устремляется в мозг.
Зрительная адаптация. При переходе от темноты к свету наступает временное ослепление, а затем чувствительность глаза постепенно снижается. Это приспособление зрительной сенсорной системы к условиям яркой освещенности называется световой адаптацией. Обратное явление (темновая адаптация} наблюдается при переходе из светлого помещения в почти не освещенное. В первое время человек почти ничего не видит из-за пониженной возбудимости фоторецепторов и зрительных нейронов. Постепенно начинают выявляться контуры предметов, а затем различаются и их детали, так как чувствительность фоторецепторов и зрительных нейронов в темноте постепенно повышается.
Слепящая яркость света. Слишком яркий свет вызывает неприятное ощущение ослепления. Верхняя граница слепящей яркости зависит от адаптации глаза: чем дольше была темновая адаптация, тем меньшая яркость света вызывает ослепление.
Роль движения глаз для зрения. При рассматривании любых предметов глаза двигаются. Глазные движения осуществляют 6 мышц, прикрепленных к глазному яблоку. Движение двух глаз совершается одновременно и содружественно. Важная роль движений глаз для зрения определяется также тем, что для непрерывного получения мозгом зрительной информации необходимо движение изображения на сетчатке. при неподвижных глазах и объектах исчезает через 1— 2 с. Чтобы этого не случилось, глаз при рассматривании любого предмета производит не ощущаемые человеком непрерывные скачки. Вследствие каждого скачка изображение на сетчатке смещается с одних фоторецепторов на новые. Чем сложнее рассматриваемый объект, тем сложнее траектория движения глаз. Они как бы прослеживают контуры изображения, задерживаясь на наиболее информативных его участках (например, в лице — это глаза).
Бинокулярное зрение. При взгляде на какой-либо предмет у человека с нормальным зрением не возникает ощущения двух предметов, хотя и имеется два изображения на двух сетчатках. Изображения всех предметов попадают на так называемые корреспондирующие, или соответственные, участки двух сетчаток, и в восприятии человека эти два изображения сливаются в одно.
Слуховая система
Слуховая система — одна из важнейших дистантных сенсорных систем человека в связи с возникновением у него речи как средства межличностного общения. Акустические (звуковые) сигналы представляют собой колебания воздуха с разной частотой и силой. Они возбуждают слуховые рецепторы, находящиеся в улитке внутреннего уха. Рецепторы активируют первые слуховые нейроны, после чего сенсорная информация передается в слуховую область коры большого мозга через ряд последовательных отделов.
Наружное ухо. Наружный слуховой проход проводит звуковые колебания к барабанной перепонке. Барабанная перепонка, отделяющая наружное ухо от барабанной полости, или среднего уха, представляет собой тонкую (0,1 мм) перегородку, имеющую форму направленной внутрь воронки. Перепонка колеблется при действии звуковых колебаний, пришедших к ней через наружный слуховой проход.
Среднее ухо. В заполненном воздухом среднем ухе находятся три косточки: молоточек, наковальня и стремечко, которые последовательно передают колебания барабанной перепонки во внутреннее ухо. Молоточек вплетен рукояткой в барабанную перепонку, другая его сторона соединена с наковальней, передающей колебания стремечку. Благодаря особенностям геометрии слуховых косточек стремечку передаются колебания барабанной перепонки уменьшенной амплитуды, но увеличенной силы.
В среднем ухе расположены две мышцы: напрягающая барабанную перепонку (m. tensor tympani) и стременная (m. stapedius). Первая из них, сокращаясь, усиливает натяжение барабанной перепонки и тем самым ограничивает амплитуду ее колебаний при сильных звуках, а вторая фиксирует стремечко и тем самым ограничивает его движения. Этим внутреннее ухо автоматически предохраняется от перегрузок. При мгновенных сильных раздражениях (удары, взрывы и т. д.) этот защитный механизм не успевает сработать, что может привести к нарушениям слуха (например, у взрывников и артиллеристов).
Во внутреннем ухе находится улитка, содержащая слуховые рецепторы. Улитка представляет собой костный спиральный канал, образующий 2,5 витка. Внутри среднего канала улитки на основной мембране расположен звуковоспринимающий аппарат — спиральный орган, содержащий рецепторные волосковые клетки. Эти клетки трансформируют механические колебания в электрические потенциалы.
Механизмы слуховой рецепции. При действии звука основная мембрана начинает колебаться, наиболее длинные волоски рецепторных клеток (стереоцилии) касаются покровной мембраны и несколько наклоняются. Отклонение волоска на несколько градусов приводит к натяжению тончайших вертикальных нитей, связывающих между собой верхушки соседних волосков данной клетки. Через открытый канал в волосок начинает течь калиевый ионный ток. Электрическая активность путей и центров слуховой системы. Даже в тишине по волокнам слухового нерва следуют спонтанные импульсы. При звуковом раздражении частота импульсации в волокнах нарастает и остается повышенной в течение всего времени, пока действует звук. На низких уровнях слуховой системы сравнительно немного нейронов, отвечающих лишь на включение и выключение звука (нейроны on-, off- и on-off- типа). На высоких уровнях системы процент таких нейронов возрастает.
Слуховые ощущения. Тональность (частота) звука. Верхняя граница частоты воспринимаемых звуков зависит от возраста человека: с годами она постепенно понижается и старики часто не слышат высоких тонов. Бинауральный слух. Человек и животные обладают пространственным слухом, т. е. способностью определять положение источника звука в пространстве. Это свойство основано на наличии бинаурального слуха, или слушания двумя ушами. Для него важно и наличие двух симметричных половин на всех уровнях слуховой системы. Острота бинаурального слуха у человека очень высока: положение источника звука определяется с точностью до 1 углового градуса. Основой этого служит способность нейронов слуховой системы оценивать интерауральные (межушные) различия времени прихода звука на правое и левое ухо и интенсивности звука на каждом ухе. Если источник звука находится в стороне от средней линии головы, звуковая волна приходит на одно ухо несколько раньше и имеет большую силу, чем на другом ухе. Оценка удаленности источника звука от организма связана с ослаблением звука и изменением его тембра.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|