Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Способы получения вакуума.




ЛАБОРАТОРНАЯ РАБОТА №116.

ПОЛУЧЕНИЕ И ИЗМЕРЕНИЕ ВАКУУМА

Цель работы: ознакомиться с методами получения и измерения вакуума. Определить скорость откачки форвакуумного насоса.

Приборы и принадлежности: вакуумная установка, состоящая из форвакуумного пластинчато-роторного насоса 2НВР-5ДМ, баллона предварительного разряжения и вакууметра ВТ-2, секундомер.

 

Теория метода

Вакуум - состояние газа, при котором его давление значительно ниже атмосферного.

При разрежении газа средняя длина свободного пробега молекул возрастает, поэтому степень вакуума принято оценивать путем сопоставления средней длины свободного пробега с характерными размерами L откачиваемого сосуда, например, для сферы диаметром D: L = (2/3) D.

Различают три области вакуума:

1. Низкий вакуум – это состояние газа, при котором взаимные столкновения между молекулами преобладают над столкновениями молекул газа со стенками вакуумного сосуда, при этом <<L.

2. Средний вакуум – это состояние газа, когда частоты соударений молекул друг с другом и со стенками сосуда приблизительно одинаковы, при этом ~L.

3. Высокий вакуум – это состояние газа, при котором столкновения молекул газа со стенками сосуда преобладают над взаимными столкновениями молекул газа, при этом >>L.

При не слишком малых размерах сосуда (не поры и не капилляры) степень вакуумирования можно характеризовать величиной давления газа. Связь между давлением и средней длиной свободного пробега ясна из табл. 1.

Таблица №1

 

Р, Па Р, мм. рт.ст. λ, м Области вакуума (ГОСТ 5197-50)
1,013·105   6,25·10-7 атм.
1,333·102   4,72·10-5 низкий вакуум
1,333 10-2 4,72·10-3 средний вакуум
1,333·10-2 10-4 4,72·10-1  
1,333·10-2 10-4 4,72·10-1 высокий вакуум
1,333·10-5 10-7 4,72·102  

 

Вакуум широко используется в современной науке, технике и технологии. Например, явление уменьшения теплопроводности газов в области высокого вакуума применяется при теплоизоляции. Общеизвестно использование вакуума в электронной технике, в ускорителях элементарных частиц, в процессах сушки, испарения, дистилляции и т.п. Особенно широко вакуумная техника применяется в производстве сверхчистых веществ, полупроводников и микросхем.

 

Способы получения вакуума.

Состояние разряжения газов достигается с помощью вакуумных насосов.

В процессе откачки используются два свойства газов:

1. способность занимать весь предоставленный объем,

2. проникновение молекул одного газа между молекулами другого (взаимная диффузия).

Первое свойство используется в механических насосах, второе – в диффузионных.

Принципиальная схема одного из распространенных типов механических насосов представлена на рис.1.

Насос состоит из цилиндрической камеры 1 с входным патрубком 2 и выходным клапаном 3. Внутри камеры вращается цилиндрический ротор 4, эксцентрично расположенный относительно оси симметрии камеры. В прорези ротора вставлены две пластины 5, плотно прижимаемые к внутренней поверхности камеры пружиной 6. Для уплотнения рабочих зазоров роторного механизма, выхлопного клапана 3 и смазки трущихся поверхностей корпус насоса помещается в кожух 7, заполненный вакуумным маслом. Вакуумные масла (ВМ-1, ВМ-5) отличаются низким давлением (рн ~ 10-5 Па) насыщенного пара при комнатной температуре.

Пластины 5 образуют во внутреннем объеме между ротором и корпусом камеру А всасывания и камеру Б сжатия. Объем этих камер при вращении ротора непрерывно изменяется. Причем в то время, когда объем камеры всасывания увеличивается и откачиваемый газ заполняет ее через впускной патрубок 2, объем камеры сжатия Б уменьшается и газ из нее выбрасывается через выхлопной патрубок 10 в атмосферу. Процесс через каждые полоборота ротора повторяется.

Насосы подобной конструкции позволяют производить откачку лишь до давления Р ~ 10-3 мм рт.ст. Это объясняется прорывом газов в месте соприкосновения ротора с цилиндрической камерой вследствие большой разности давления. Поэтому подобные насосы применяются для создания низкого предварительного вакуума (форвакуум а) и называются форвакуумными.

Для получения высокого вакуума применяются диффузионные насосы. Принцип действия такого насоса основан на том, что пары какой-либо жидкости, вырываясь с большой скоростью из сопла, уносят с собой продиффундировавшие в них молекулы откачиваемого газа.

Обратный поток газа в откачиваемый сосуд устраняется тем, что выброс смеси пара с газом происходит в область пониженного давления (в баллон предварительного разрежения), создаваемого форвакуумным насосом.

Диффузионные насосы позволяют производить разрежение газов до Р = 10-6 мм.рт.ст.

На рис. 2 изображена схема двухступенчатого разгоночного паромасляного диффузионного насоса ММ – 40А. Он состоит из корпуса 1, паропроводов 2 и 3 и электронагревателя 4. Корпус насоса представляет собой стальной цилиндр, нижняя часть которого вместе с днищем служит испарителем. Корпус снабжен рубашкой водного охлаждения 5 со штуцерами для ввода и вывода проточной воды. Для соединения с откачиваемым сосудом служит патрубок 7. Откачиваемый воздух из камеры Д удаляется через патрубок 11 в область форвакуума.

Все масло в испарителе распределяется по трем коаксиальным камерам: А – внутренняя камера в цилиндре 3, В – кольцевая камера между цилиндрами 2 и 3, Д – кольцевая камера между цилиндром 2 и стенкой корпуса 1. Вначале во всех камерах насоса масло имеет один и тот же состав. При разогревании легкие его фракции испаряются, конденсируются на стенках холодильника и стекают в камеру Д. Испарение в этой камере слабое, так как непрерывно поступает охлажденное масло, и, кроме того, пары, вышедшие из этой камеры, задерживаются манжетами 10. Далее легкие фракции через отверстия 0 поступают в камеру В. Здесь они испаряются и выходят через сопло первой ступени 8. Таким образом, в центральной круговой камере остаются наиболее тяжелые фракции масла, и в сопло второй ступени 9, ближайшее к откачиваемому объекту, попадают пары только этих тяжелых фракций, обладающие минимальным давлением насыщенных паров рн ~ 10-6 мм.рт.ст.

Поскольку при работе насоса происходит отделение легких фракций масла по принципу разгонки в жидкой фазе, насос называется разгоночным.

Для работы насоса ММ – 40 А необходимо наличие предварительного разрежения до р ~ 5·10-2 мм рт.ст. Производительность насоса 40 л/с при давлении р = 10-4 мм рт.ст. Предельный вакуум, достигаемый насосом, р = 5·10-6 мм рт.ст.

Сверхвысокий вакуум (р ~ 10-11 мм.рт.ст. получают с помощью молекулярных, электроразрядных или сорбционных насосов в соединении с форвакуумными насосами и охлаждаемыми до – 196оС жидким азотом ловушками. При этом требуется обязательное предварительное обезгаживание вакуумной системы путем длительного прогрева ее до ~ 450оС при непрерывной откачке.

Измерение вакуума.

Под измерением вакуума понимают измерение давления разреженного газа. В зависимости от диапазонов измеряемых давлений применяют различные типы манометров. Основными из них являются жидкостные (ртутные), термоэлектрические, электроразрядные и магнитные.

В настоящей работе применяется термопарный манометр (рис. 3). Он состоит из двух частей: манометрической лампы ЛТ – 4М, подключаемой к вакуумной системе, и электрического измерительного прибора ВТ – 2А. Манометрическая лампа выполняет функцию датчика, а с помощью прибора устанавливается режим работы лампы и измеряется давление.

Манометрическая лампа состоит из металлического баллона 1, внутри которого помещена нить накала 2, в виде тонкой платиновой проволоки, и термопары 3 из хромеля и копеля. Термопара приварена к средней части нити накала, благодаря чему между ними осуществляется хороший тепловой контакт. Отросток 4 служит для подключения лампы к вакуумной системе.

Принцип действия манометра заключается в том, что при достаточно низком давлении, когда средняя длина свободного пробега молекул ~ L, теплопроводность газа начинает зависеть от давления. Чем меньше давление, тем меньше теплоотдача с нити накала и поэтому выше температура горячего спая термопары, а следовательно, и ЭДС термопары при том же токе накала. Прибор ВТ–2А, измеряющий термо-ЭДС термопары, может быть проградуирован в милливольтах или непосредственно в единицах измеряемого давления.

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...