Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Изучение термодинамики




КАФЕДРА ФИЗИКИ

 

 

ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ

 

ЛАБОРАТОРНАЯ РАБОТА №120а

 

Составители: доц. Самигуллин Ф.М.

ст. преп. Чуйкова А.И.

 

 

Лабораторная работа 120а

 

ИЗУЧЕНИЕ ТЕРМОДИНАМИКИ ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ

 

Цель работы: определение свободной, связанной и полной энергии поверхностного слоя воды на основе измерений коэффициента поверхностного натяженияa и его зависимости от температуры .

Приборы и принадлежности: прибор для определения поверхностного натяжения жидкости, пробирка с дистиллированной водой, стакан для водяной бани, ртутный термометр со шкалой от 00 до 1000С, мешалка, сливной сосуд, электронагреватель.

Краткая теория. Важнейший признак всякой жидкости – существование свободной поверхности. Молекулы поверхностного слоя жидкости, имеющего толщину порядка 10-9 м, находятся в ином состоянии, чем молекулы в толще жидкости. Поверхностный слой оказывает на жидкость давление, называемое молекулярным. Молекулярное давление направлено внутрь жидкости перпендикулярно к ее свободной поверхности.

Силы поверхностного натяжения в любой точке поверхности направлены по касательной к ней и по нормали к любому элементу линии, мысленно проведенной на поверхности жидкости. Коэффициент поверхностного натяжения a численно равен силе поверхностного натяжения, действующей на единицу длины линии, разделяющей поверхность жидкости на части:

.

С другой стороны, коэффициент поверхностного натяжения a можно определить как величину, численно равную свободной энергии единицы площади поверхностного слоя жидкости:

.

Под свободной энергией понимают ту часть энергии системы, за счет которой может быть получена работа при изотермическом процессе.

В системе СИ коэффициент поверхностного натяжения измеряется в Н/м или Дж/м2.

Коэффициент поверхностного натяжения зависит от природы жидкости. Для каждой жидкости он является функцией температуры и зависит также от того, какая среда находится над свободной поверхностью жидкости.

Рассмотрим изотермическое обратимое увеличение поверхностного слоя жидкости. Работа внешней силы будет , сама же пленка поверхности совершит работу .

 

Согласно первому началу термодинамики , поверхностному слою надо сообщить теплоту *), которая расходуется на изменение внутренней энергии и работу , совершаемую пленкой:

. (1)

Для обратимого процесса , где - абсолютная температура, - изменение энтропии (функции состояния системы, изменение которой при обратимом процессе определяется как ). Поэтому уравнение (1) перепишется в виде термодинамического тождества:

. (2)

Из термодинамики известно, что вся работа при изотермическом процессе равна изменению свободной энергии системы (энергии, способной дать механическую работу). Так как свободная энергия системы

, (3)

где - внутренняя энергия, а -связанная энергия (та часть энергии, которая не может быть превращена в работу ни при каких условиях), то из уравнения (3) изменение свободной энергии

. (4)

Подстановка выражения (2) в (4) дает:

. (5)

Отсюда

; .

Подставляя значение в уравнение (3), найдем:

. (6)

Так как коэффициент поверхностного натяжения не зависит от площади поверхности, а зависит от температуры и, согласно определению , то, подставив значение и его производной в уравнение (6), получим:

. (7)

Поделив левую и правую части уравнения (7) на площадь s, найдем:

, (8)

где - полная внутренняя энергия единицы площади, - свободная энергия единицы площади, связанная энергия единицы площади поверхности жидкости.

Из первого начала термодинамики можно понять физический смысл уравнения (8). При изотермическом расширении поверхности жидкости на единицу площади ей нужно сообщить теплоту:

.

Величина Q положительна, так как из опыта следует, что .

Из формулы (8) видно, что, определив поверхностное натяжение какой –либо жидкости при данной температуре и зависимость ее поверхностного натяжения от температуры, можно рассчитать свободную , связанную и полную энергии, приходящиеся на единицу поверхности жидкости.

В данной работе поверхностное натяжение определяется методом измерения максимального избыточного давления в пузырьке воздуха (метод Ребиндера).

 

Описание прибора. Для определения коэффициента поверхностного натяжения по методу максимального давления в пузырьке используется простейший прибор, изображенный на рисунке 1. Он состоит из стеклянной S- образной трубки, повернутой на 900 относительно горизонтальной оси. Левая часть трубки образует U-образный водяной манометр, а нижний конец правой части заканчивается капиллярным кончиком. В левое колено манометра вставлен отросток колбы А с краном К1. В колбе находится вода, которая при открытом кране К1 постепенно заполняя трубку манометра должна создавать необходимое избыточное давление воздуха в капилляре. Внизу U- образной трубки имеется кран К2, с помощью которого (при открытом капилляре) можно установить уровень жидкости в манометре или полностью слить ее в сосуд С. Исследуемая жидкость наливается в пробирку П, которая затем вставляется в водяную баню Б для термостатирования. Температура контролируется по ртутному термометру Т на 1000С.

Горячую воду для водяной бани готовят отдельно вне описываемого прибора.

Теория метода. Измерение коэффициента поверхностного натяжения в данной работе производится методом, основанным на измерении максимального давления, необходимого для выталкивания пузырька воздуха из отверстия капиллярного кончика стеклянной трубки в данную жидкость.

Если капиллярную стеклянную трубку одним концом слегка погрузить в жидкость и медленно выдувать через нее воздух, то поверхность жидкости, отделяющая ее от воздуха в трубке, будет прогибаться до тех пор, пока при некотором определенном давлении в трубке из нее не проскочит пузырек воздуха. При увеличении давления в трубке кривизна поверхности жидкости будет сначала увеличиваться, пока эта поверхность не примет форму полусферы с радиусом, равным радиусу выходного отверстия трубки , а затем снова будет уменьшаться (рис.2). Пузырек воздуха, образующийся на кончике трубки будет находиться под добавочным давлением искривленной поверхности жидкости, препятствующим выходу пузырька из трубки. Как известно, добавочное “лапласовское” давление сферической поверхности связано с коэффициентом поверхностного натяжения и ее радиусом следующим соотношением:

, (9)

где - радиус кривизны поверхности.

Максимальное давление, действующее на пузырек воздуха со стороны жидкости, очевидно, будет (где - радиус выходного отверстия трубки). Следовательно, он будет выталкиваться из трубки тогда, когда разность давления воздуха в трубке и над поверхностью жидкости вне трубки будет равна (или чуть больше) максимальному давлению на пузырек со стороны искривленной поверхности жидкости. Откуда следует, что:

. (10)

Величина является постоянной для данного прибора и не зависит от рода испытуемой жидкости. Этой формулой удобно воспользоваться для определения отношения коэффициента поверхностного натяжения α испытуемой жидкости к известному из таблиц коэффициенту поверхностного натяжения α0, жидкости, условно принятую за эталонную. Достаточно измерить для испытуемой жидкости и для эталонной жидкости. После этого абсолютный коэффициент поверхностного натяжения испытуемой жидкости определится из соотношения:

. (11)

Измерения. Экспериментальную установку готовят к измерениям следующим образом. При закрытом кране К1 наливают в колбу А воду и вставляют отростком в U –образный манометр. Подставляют сливной сосуд C под закрытый кран К2 и, открыв кран К1 колбы А заполняют манометр водой настолько, чтобы уровень жидкости в обоих его коленах установился примерно на 2-3 см выше нулевой отметки и закрывают кран. Подставляют пробирку П с исследуемой жидкостью под капилляр таким образом, чтобы кончик капилляра прикоснувшись к поверхности жидкости погрузился в нее не более чем на 0,5 мм. Затем снова открывают кран К1 колбы А настолько, чтобы нарастание давления воздуха в правой части манометра происходило достаточно медленно и удобно было бы отсчитать разность высот уровней в момент отрыва пузырька. Пузырьки воздуха должны отрываться примерно через каждые 5-10 сек. После установления указанного времени образования пузырьков можно производить измерения.

 

Поделиться:





Читайте также:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...