Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Установление потребной точности результатов измерений (выходных параметров).

Экспериментальные измерения, виды измерений.

Экспериментальные измерения принято разделять на три вида:

1) прямые измерения, при которых непосредственно регистрируются значения измеряемой величины (например, измерение напряжения вольтметром);

2) косвенные измерения (например, измерения силы тока амперметром, активного сопротивления омметром и расчет ),

т.е. косвенные измерения - это получение величины по измеренным значениям .

3) совместные измерения (например, измерения напряжения и силы тока при разных значениях и построение результирующей зависимости ).

Так образом, совместные измерения - это измерения двух или нескольких неодноименных величин для построения зависимости между ними.

Планирование эксперимента предполагает не только оптимизацию числа измерений, но и уменьшение экспериментальных погрешностей. Поэтому значительную часть математического аппарата теории планирования эксперимента составляют теория ошибок, теория вероятностей и математическая статистика.

Установление потребной точности результатов измерений (выходных параметров).

Установление потребной точности результатов измерений, области возможного изменения входных параметров и уточнение видов воздействий осуществляется следующим образом.

- Выбирается вид образцов или исследуемых объектов, учитывая степень их соответствия реальному изделию по состоянию, устройству, форме, размерам и другим характеристикам.

- На назначение степени точности влияют условия изготовления и эксплуатации объекта. Условия изготовления, то есть возможности производства, ограничивают наивысшую реально достижимую точность. Условия эксплуатации, то есть условия обеспечения нормальной работы объекта, определяют минимальные требования к точности.

- Точность экспериментальных данных также существенно зависит от объема (числа) испытаний - чем испытаний больше, тем (при тех же условиях) выше достоверность результатов.

 

4. Составление плана и проведение эксперимента, статистическая обработка и анализ полученных результатов

Это количество и порядок испытаний, способ сбора, хранения и документирования данных.

Порядок проведения испытаний важен, если входные параметры (факторы) при исследовании одного и того же объекта в течение одного опыта принимают разные значения.

Например, при испытании на усталость при ступенчатом изменении уровня нагрузки предел выносливости зависит от последовательности нагружения, так как по-разному идет накопление повреждений, и, следовательно, будет разная величина предела.

В ряде случаев, когда систематически действующие параметры сложно учесть и проконтролировать, их преобразуют в случайные, специально предусматривая случайный порядок проведения испытаний (рандомизация эксперимента). Это позволяет применять к анализу результатов методы математической теории статистики.

Порядок испытаний также важен в процессе поисковых исследований: в зависимости от выбранной последовательности действий при экспериментальном поиске оптимального соотношения параметров объекта или какого-то процесса может потребоваться больше или меньше опытов. Эти экспериментальные задачи подобны математическим задачам численного поиска оптимальных решений. Наиболее хорошо разработаны методы одномерного поиска (однофакторные однокритериальные задачи), такие как метод Фибоначчи, метод золотого сечения.

5. Статистическая обработка результатов эксперимента

Статистическая обработка результатов экспериментазаключается в построении математической модели поведения исследуемых характеристик.

Необходимость обработки вызвана тем, что выборочный анализ отдельных данных, вне связи с остальными результатами, или же некорректная их обработка могут не только снизить ценность практических рекомендаций, но и привести к ошибочным выводам.

Обработка результатов включает:

· определение доверительного интервала среднего значения и дисперсии (или среднего квадратичного отклонения) величин выходных параметров (экспериментальных данных) для заданной статистической надежности;

· проверка на отсутствие ошибочных значений (выбросов), с целью исключения сомнительных результатов из дальнейшего анализа. Проводится на соответствие одному из специальных критериев, выбор которого зависит от закона распределения случайной величины и вида выброса.

Проверка соответствия опытных данных ранее априорно введенному закону распределения. В зависимости от этого подтверждаются выбранный план эксперимента и методы обработки результатов, уточняется выбор математической модели.

Построение математической модели выполняется в случаях, когда должны быть получены количественные характеристики взаимосвязанных входных и выходных исследуемых параметров. Это - задачи аппроксимации, то есть выбора математической зависимости, наилучшим образом соответствующей экспериментальным данным. Для этих целей применяют регрессионные модели, которые основаны на разложении искомой функции в ряд с удержанием одного (линейная зависимость, линия регрессии) или нескольких (нелинейные зависимости) членов разложения (ряды Фурье, Тейлора). Одним из методов подбора линии регрессии является широко распространенный метод наименьших квадратов.

Для оценки степени взаимосвязанности факторов или выходных параметров проводят корреляционный анализ результатов испытаний. В качестве меры взаимосвязанности используют коэффициент корреляции: для независимых или нелинейно зависимых случайных величин он равен или близок к нулю, а его близость к единице свидетельствует о полной взаимосвязанности величин и наличии между ними линейной зависимости.

При обработке или использовании экспериментальных данных, представленных в табличном виде, возникает потребность получения промежуточных значений. Для этого применяют методы линейной и нелинейной (полиноминальной) интерполяции (определение промежуточных значений) и экстраполяции (определение значений, лежащих вне интервала изменения данных).

6. Анализ полученных результатов

Анализ полученных результатов и формулирование рекомендаций по их использованию обычно показывает, за счет чего происходит снижение трудоемкости и сокращение сроков испытаний. Чаще всего снижение трудоемкости и сокращение сроков испытаний достигается применением автоматизированных экспериментальных комплексов. Такой комплекс включает испытательные стенды с автоматизированной установкой режимов (позволяет имитировать реальные режимы работы), автоматически обрабатывает результаты, ведет статистический анализ и документирует исследования.

Но велика и ответственность инженера в этих исследованиях: четкое поставленные цели испытаний и правильно принятое решение позволяют точно найти слабое место изделия, сократить затраты на доводку и итерационность процесса проектирования.

Контрольные вопросы

 

1. Требованиями, предъявляемыми к математическим моделям объектов

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...