собственная проводимость п/п.
⇐ ПредыдущаяСтр 3 из 3 Собственная проводимость полупроводников обычно невелика, так как число свободных электронов, например, в германии при комнатной температуре порядка 3·10-13 см-3. В то же время число атомов германия в 1 см3 ~ 1023. Таким образом, число свободных электронов составляет примерно одну десятимиллиардную часть от общего числа атомов. Существенная особенность полупроводников состоит в том, что в них при наличии примесей наряду с собственной проводимостью возникает дополнительная - примесная проводимость. Изменяя концентрацию примеси, можно значительно изменять число носителей заряда того или иного знака. Благодаря этому можно создавать полупроводники с преимущественной концентрацией одного из носителей тока электронов или дырок. Эта особенность полупроводников открывает широкие возможности для их практического применения. 53) Электрическая проводимость п/п при наличии примесей: донорные и акцепторные примеси. Донорные примеси. Оказывается, что при наличии примесей, например атомов мышьяка, даже при очень малой их концентрации, число свободных электронов возрастает во много раз. Происходит это по следующей причине. Атомы мышьяка имеют пять валентных электронов. Четыре из них участвуют в создании ковалентной связи данного атома с окружающими, например с атомами кремния. Пятый валентный электрон оказывается слабо связанным с атомом. Он легко покидает атом мышьяка и становится свободным. При добавлении одной десятимиллионной доли атомов мышьяка концентрация свободных электронов становится равной 1016 см-3. Это в тысячу раз больше концентрации свободных электронов в чистом полупроводнике. Примеси, легко отдающие электроны и, следовательно, увеличивающие число свободных электронов, называют донорными (отдающими) примесями.
Поскольку полупроводники, имеющие донорные примеси, обладают большим числом электронов (по сравнению с числом дырок), их называют полупроводниками n-типа (от английского слова negative - отрицательный). В полупроводнике n-типа электроны являются основными носителями заряда, а дырки - неосновными. Акцепторные примеси. Если в качестве примеси использовать индий, атомы которого трехвалентны, то характер проводимости полупроводника меняется. Теперь для образования нормальных парноэлектронных связей с соседями атому индия недостает одного электрона. В результате образуется дырка. Число дырок в кристалле равно числу атомов примеси. Такого рода примеси называют акцепторными (принимающими). При наличии электрического поля дырки перемещаются по полю и возникает дырочная проводимость. Полупроводники с преобладанием дырочной проводимости над электронной называют полупроводниками р-типа (от английского слова positive - положительный). Основными носителями заряда в полупроводнике р-типа являются дырки, а неосновными - электроны. Донорные примеси отдают лишние валентные электроны: образуется полупроводник n-типа. Акцепторные примеси создают дырки: образуется полупроводник р-типа. 54) Электрический ток через контакт полупроводников р- и n- типов. Наиболее интересные явления происходят при контакте полупроводников n- и р-типов. Эти явления используются в большинстве полупроводниковых приборов. На рисунке 16.10 изображена схема полупроводника, правая часть которого содержит донорные примеси и поэтому является полупроводником n-типа, а левая - акцепторные примеси и представляет собой полупроводник р-типа; между ними - зона перехода - зона, обедненная зарядами. В ней происходит рекомбинация электронов и дырок. Электроны изображены голубыми кружочками, дырки - серыми. Контакт двух полупроводников называют р-n- или n-р-переходом.
При образовании контакта электроны частично переходят из полупроводника n-типа в полупроводник р-типа, а дырки - в обратном направлении. В результате полупроводник n-типа заряжается положительно, ар-типа - отрицательно. Диффузия прекращается после того, как электрическое поле, возникающее в зоне перехода, начинает препятствовать дальнейшему перемещению электронов и дырок. Включим полупроводник с р-n-переходом в электрическую цепь (рис.16.11). Подключим сначала батарею так, чтобы потенциал полупроводника р-типа был положительным, а n-типа - отрицательным. При этом ток через р-n-переход создается основными носителями: из области n в область р - электронами, а из области р в область n - дырками (рис.16.12). Вследствие этого проводимость всего образца велика, а сопротивление мало. Рассмотренный здесь переход и называют прямым. Зависимость силы тока от разности потенциалов - вольт-амперная характеристика прямого перехода - изображена на рисунке 16.13 сплошной линией Изменим теперь полярность подключения батареи. Тогда при той же разности потенциалов сила тока в цепи окажется значительно меньше, чем при прямом переходе. Это обусловлено следующим. Электроны через контакт идут теперь из области р в область n, а дырки - из области n в область р. Но ведь в полупроводнике р-типа мало свободных электронов, а в полупроводнике n-типа мало дырок. Теперь переход через контакт осуществляется неосновными носителями, число которых мало (рис.16.14). Вследствие этого проводимость образца оказывается незначительной, а сопротивление - большим. Образуется так называемый запирающий слой. Такой переход называют обратным. Вольт-амперная характеристика обратного перехода изображена на рисунке 16.13 штриховой линией. Таким образом, р-n-переход можно использовать для выпрямления электрического тока. Такое устройство называется полупроводниковым диодом. Полупроводниковые диоды изготовляют из германия, кремния, селена и других веществ. Рассмотрим, как создают р-n-переход, используя германий, обладающий проводимостью n-типа, с небольшой добавкой донорной примеси. Этот переход не удается получить путем механического соединения двух полупроводников с различными типами проводимости, так как при этом получается слишком большой зазор между полупроводниками. Толщина же р-n-перехода должна быть не больше межатомных расстояний, поэтому в одну из поверхностей образца вплавляют индий. Для создания полупроводникового диода полупроводник с примесью р-типа, содержащий атомы индия, нагревается до высокой температуры. Пары примеси n-типа (например, мышьяка) осаждают на поверхность кристалла. Вследствиедиффузии они внедряются в кристалл, и на поверхности кристалла с проводимостью р-типа образуется область с электронным типом проводимости (рис.16.15).
Для предотвращения вредных воздействий воздуха и света кристалл германия помещают в герметичный металлический корпус. Схематическое изображение диода приведено на рисунке 16.16. Полупроводниковые выпрямители обладают высокой надежностью и имеют большой срок службы. Однако они могут работать лишь в ограниченном интервале температур (от -70 до 125°С). p-n-Переход по отношению к току оказывается несимметричным: в прямом направлении сопротивление перехода значительно меньше, чем в обратном. Свойства р-n-перехода используют для выпрямления переменного тока. На протяжении половины периода изменения тока через переход, когда потенциал полупроводника р-типа положителен, ток свободно проходит через р-n-переход. В следующую половину периода ток практически равен нулю. Полупроводниковый диод. Основным элементом современных выпрямителей переменного тока являются полупроводниковые диоды. Для выпрямления электрического тока в радиосхемах наряду с двухэлектродными лампами применяют полупроводниковые диоды, так как они обладают рядом преимуществ. Полупроводниковые диоды изготовляют из германия, кремния, селена и др. 55) Открытие электромагнитной индукции- Явление электромагнитной индукции было экспериментально обнаружено М. Фарадеем в 1831 г. Направление индукционного тока- Присоединив катушку, в которой возникает индукционный ток, к гальванометру, можно обнаружить, что направление этого тока зависит от того, приближается ли магнит к катушке (например, северным полюсом) или удаляется от нее
Правило Ленца- Согласно правилу Ленца возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей. Закон электромагнитной индукции- Согласно закону электромагнитной индукции ЭДС индукции в замкнутом контуре равна по модулю, скорости изменения магнитного потока через поверхность, ограниченную контуром: Вихревое электрическое поле- Электрическое поле, возникающее при изменении магнитного поля, имеет совсем другую природу, чем электростатическое. Оно не связано непосредственно с электрическими зарядами, и его линии напряженности не могут на них начинаться и кончаться. Они вообще нигде не начинаются и не кончаются, а представляют собой замкнутые линии, подобныe линиям индукции магнитного поля. Это так называемое вихревое электрическое поле Индукционные токи в массивных проводниках- Особенно большого числового значения индукционные токи достигают в массивных проводниках, из-за того, что их сопротивление мало. Такие токи, называемые токами Фуко по имени исследовавшего их французского физика, можно использовать для нагревания проводников. На этом принципе основано устройство индукционных печей, например используемых в быту СВЧ-печей. Также этот принцип используется для плавки металлов. Кроме этого явление э.пектромагнит-ной индукции используется в детекторах металла, устанавливаемых при входах в здания аэровокзалов, театров и т. д. Применение ферритов- Радиоэлектронная аппаратура работает в области очень высоких частот (миллионы колебаний в секунду). Здесь применение сердечников катушек из отдельных пластин уже не дает нужного эффекта, так как большие токи Фуко возникают в каледой пластине. При быстром изменении магнитного поля в обычном ферромагнетике возникают индукционные токи, магнитное поле которых, в соответствии с правилом Ленца, препятствует изменению магнитного потока в сердечнике катушки. Из-за этого поток магнитной индукции практически не меняется и сердечник не перемагничивается. В ферритах вихревые токи очень малы, поэтому их можно быстро перемагничивать. Наряду с потенциальным кулоновским электрическим полем существует вихревое электрическое поле. Линии напряженности этого поля замкнуты. Вихревое поле порождается меняющимся магнитным полем
56) ЭДС индукции в движущихся проводниках- При движении проводника его свободные заряды движутся вместе с ним. Поэтому на заряды со стороны магнитного поля действует сила Лоренца. Она-то и вызывает перемещение зарядов внутри проводника. ЭДС индукции, следовательно, имеет магнитное происхождение. На многих электростанциях земного шара именно сила Лоренца вызывает перемещение электронов в движущихся проводниках. Электродинамический микрофон- Микрофоны широко применяются в радиовещании, телевидении, системах усиления звука и звукозаписи, для телефонной связи. Действие одного из самых распространенных микрофонов — электродинамического — основано на явлении электромагнитной индукции. Этот микрофон устроен следующим образом. Диафрагма 2 из тонкой полистирольной пленки или алюминиевой фольги жестко связана со звуковой катушкой / из тонкой проволоки. Катушка помещается в кольцевом зазоре сильного постоянного магнита 3. Линии магнитной индукции перпендикулярны к виткам катушки. Самоиндукция- Если по катушке идет переменный ток, то магнитный поток, пронизывающий катушку, меняется. Поэтому в том же самом проводнике, по которому идет переменный ток, возникает ЭДС индукции. Аналогия между самоиндукцией и инерцией- Явление самоиндукции подобно явлению инерции и механике. Так, инерция приводит к тому, что под действием силы тело не мгновенно приобретает определенную скорость, а постепенно. Тело нельзя мгновенно затормозить, как 6ы велика ни была тормозящая сила. Точно так же за счет самоиндукции при замыкании цепи сила тока не сразу приобретает определенное значение, а нарастает постепенно. Выключая источник, мы не прекращаем ток сразу. Самоиндукция поддерживает его некоторое время, несмотря на сопротивление цепи. Явление самоиндукции выполняет очень важную роль в: электротехнике и радиотехнике. Индуктивность цепи «оказывает существенное влияние на прохождение по цепи переменного электрического тока. Подробно об этом будет рассказано в главе 4. При изменении силы тока в проводнике в нем возникает вихревое электрическое поле. Это поле тормозит электроны ири возрастании силы тока и ускоряет при убывании. Индуктивность- Модуль вектора индукции магнитного поля, создаваемого током, пропорционален силе тока. Так как магнитный поток Ф пропорционален В, то Ф~ В~ I Используя закон электромагнитной индукции и выражение Ф = LI получаем равенство: Энергия магнитного поля тока- Энергия магнитного поля, созданного током, проходящим по участку цепи с индуктивностью L, определяется по формуле Электромагнитное поле- Согласно гипотезе Максвелла переменное электрическое поле порождает магнитное поле. Электромагнитное поле - единое целое: в зависимости от системы отсчета npoявляются те или иные свойства поля.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|