Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Угловое ускорение при вращении тела

Импульс тела - это физическая векторная величина, равная произведению массы тела на его скорость.

Вектор импульса тела направлен так же как и вектор скорости этого тела.

 

Векторная сумма импульсов взаимодействующих тел, составляющих замкнутую систему, остается неизменной.

или

Замкнутой называется система тел, взаимодействующих только друг с другом и не взаимодействующих с другими телами.

 

 

4. Энергия — универсальная мера различных форм движения и взаимодействия. С раз­личными формами движения материи связывают различные формы энергии: механи­ческую, тепловую, электромагнитную, ядерную и др. В одних явлениях форма движе­ния материи не изменяется (например, горячее тело нагревает холодное), в дру­гих — переходит в иную форму (например, в результате трения механическое движение превращается в тепловое). Однако существенно, что во всех случаях энергия, отданная (в той иди иной форме) одним телом другому телу, равна энергии, полученной последним телом. Кинетическая энергия механической системы — это энергия механического движения этой системы.

Потенциальная энергия — механическая энергия системы тел, определяемая их вза­имным расположением и

характером сил взаимодействия между ними. Потенциальная энергия тела в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

где — масса тела, — ускорение свободного падения, — высота положения центра масс тела над произвольно выбранным нулевым уровнем.

Угловая скорость

Скорость вращения тела, определяющаяся приращением угла поворота тела за промежуток времени называется угловой скоростью.

Обозначение: ω (омега).

Размерности:

  • Количество оборотов за единицу времени [об/мин], [c-1].
  • Угол поворота за единицу времени [рад/с].

Угловая скорость при вращении тела вокруг неподвижной точки

Угловой скоростью называют векторную величину, характеризующую быстроту вращения твердого тела, определяемую как приращение угла поворота тела за промежуток времени.

Рассмотрим бесконечно малый промежуток времени Δt0, за который твердое тело совершает поворот на бесконечно малый угол Δα вокруг мгновенной оси Ω (рисунок 3.2).

Предел, к которому стремится отношение Δα / Δt, называется угловой скоростью твердого тела в рассматриваемый момент времени

Угловая скорость является векторной величиной. Вектор угловой скорости ω может быть приложен к любой точке мгновенной оси и направлен в каждый момент времени по мгновенной оси Ω, так, чтобы, смотря навстречу этому вектору, видеть вращение тела происходящим против движения часовой стрелки.

Угловое ускорение

Изменение угловой скорости характеризуется угловым ускорением:

Единицы измерения углового ускорения: [рад/с2], [с-2]

Вектор углового ускорения так же направлен по оси вращения. При ускоренном вращении их направления совпадают, при замедленном - противоположны.

Другими словами, при положительном ускорении угловая скорость нарастает, а при отрицательном вращение замедляется.

Для некоторых частных случаев вращательного движения могут быть использованы формулы:

  • равномерное вращение (ω - const )

φ=φ0+ωt; (2.5)

  • равнопеременное вращение (ε - const )
    ω=ω0+εt; φ=φ00t+εt2/2. (2.6)

В технике угловая скорость часто задается в оборотах в минуту n [об/мин]. Один оборот – это радиан:

ω=n ⋅2π/60=nπ/30 рад/с; с-1.

Угловое ускорение при вращении тела

Угловым ускорением называют степень изменения угловой скорости.

 

За вектор углового ускорения ε при вращении тела вокруг неподвижной точки принимают вектор, который характеризует изменение угловой скорости ω в данный момент как по числовой величине, так и по направлению. Такой характеристикой является производная по времени от вектора угловой скорости ω. Таким образом, угловое ускорение определяется так:

 

 

Рис. 3.3

 

В общем случае угловое ускорение не направлено по мгновенной оси, а, как производная по времени от вектора ω, параллельно касательной к годографу этого вектора. Условимся угловое ускорение ε изображать в любой точке прямой, параллельной этой касательной годографа угловой скорости u, но проходящей через неподвижную точку тела (рисунок 3.3). Прямая, по которой направлен вектор углового ускорения, называется осью углового ускорения и обозначается E.

6. Закон сохранения механической энергии

Механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии диссипативных сил (например, сил трения) механическая энергия не возникает из ничего и не может никуда исчезнуть.

Для замкнутой системы физических тел, например, справедливо равенство
Ek1 + Ep1 = Ek2 + Ep2,
где Ek1, Ep1 — кинетическая и потенциальная энергии системы какого-либо взаимодействия, Ek2, Ep2 — соответствующие энергии после.

Закон сохранения энергии — это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия.

Формулировка закона сохранения механической энергии.

Полная механическая энергия, т.е. сумма потенциальной и кинетической энергии тела, остается постоянной, если действуют только силы упругости и тяготения и отсутствуют силы трения.

 

 

Согласно уравнению (5.8) второй закон Ньютона для вращательного движения

По определению угловое ускорение и тогда это уравнение можно

переписать следующим образом

с учетом (5.9)

или

(5.10)

Это выражение носит название основного уравнения динамики вращательного движения и формулируется следующим образом: изменение момента количества движения твердого тела , равно импульсу момента всех внешних сил, действующих на это тело.

 

Кинетическая энергия – величина аддитивная. Поэтому кинетическая энергия тела, движущегося произвольным образом, равна сумме кинетических энергий всех n материальных точек, на которые это тело можно мысленно разбить:

, (6.4.1)  

Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i -й точки , Ri – расстояние до оси вращения. Следовательно,

  , (6.4.2)  

Сопоставив (6.4.1) и (6.4.2), можно увидеть, что момент инерции тела I является мерой инертности при вращательном движении, так же как масса m – мера инерции при поступательном движении.
В общем случае движение твердого тела можно представить в виде суммы двух движений – поступательного со скоростью vc и вращательного с угловой скоростью ω вокруг мгновенной оси, проходящей через центр инерции. Тогда полная кинетическая энергия этого тела

  , (6.4.3)  

Здесь Ic – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

9. Неинерциальные системы отсчета. Силы инерции

 

Как известно, законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, которые движутся относительно инерциальной системы с ускорением, называются неинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже применять нельзя. Однако законы динамики можно применять и для них, если кроме сил, которые обусловленны воздействием тел друг на друга, ввести в рассмотрение понятие силы особого рода - так называемую силу инерции.

При учете сил инерции второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (учитывая и силы инерции). При этом силы инерции F inдолжны быть такими, чтобы вместе с силами F, обусловленными воздействием тел друг на друга, они сообщали телу ускорение а', каким оно обладает в неинерциальных системах отсчета, т. е.

(1)

Так как F =m a (a - ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае следует учитывать следующие случаи возниконовения этих сил: 1) силы инерции при ускоренном поступательном движении системы отсчета; 2) силы инерции, которые действуют на тело, покоящееся во вращающейся системе отсчета; 3) силы инерции, которые действуют на тело, движущееся во вращающейся системе отсчета.
Рассмотрим эти случаи.

1. Силы инерции при ускоренном поступательном движении системы отсчета. На тележке к штативу на нити подвешен шарик массой m (рис. 1). Пока тележка покоится или движется прямолинейно и равномерно, нить, которая удерживает шарик, занимает вертикальное положение и сила тяжести Р уравновешивается силой реакции (натяжения) нити Т.


 

Рис.1

 

Если тележку привести в поступательное движение с ускорением а 0, то нить будет отклоняться от вертикали в сторону, обратную движению, до такого угла α, пока результирующая сила F = P + T не даст ускорение шарика, равное а 0. Значит, результирующая сила F направлена в сторону ускорения тележки а 0 и для установившегося движения шарика (теперь шарик движется вместе с тележкой с ускорением а 0) равна F=mgtgα=ma0, откуда

т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.

В системе отсчета, которая связана с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила F уравновешивается равной и противоположно направленной ей силой F in, которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,

(2)

Проявление сил инерции при поступательном движении мы можем видеть в повседневных явлениях. Если поезд набирает скорость, то пассажир, сидящий при этом по ходу поезда, прижимается к спинке сиденья под действием силы инерции. Наоборот, при торможении поезда пассажир отклоняется от спинки сиденья, т.к. сила инерции направлена в противоположную сторону. Особенно силы инерции заметны при внезапном торможении поезда. Эти силы проявляются в перегрузках, возникающие при запуске и торможении космических кораблей.

10. Преобразования Галилея. Принцип относительности в классической механике

«Если среди систем отсчёта движущихся друг относительно друга прямолинейно, равномерно и поступательно, есть хотя бы одна инерциальная, то и все остальные системы тоже инерциальные».

Это положение, сформулированное Галилеем, является основным утверждением принципа относительности в классической механике.

Главная особенность инерциальных систем отсчёта состоит в том, что динамические законы механики — законы Ньютона — во всех таких системах имеют одинаковый вид. Кинематика одного и того же движения в разных инерциальных системах может быть разной, а законы динамики остаются неизменными.

Рассмотрим две системы отсчёта: S (x, y, z) и S ’(x ’, y ’, z ’): одна из них — S (x, y, z) — инерциальная, а другая — S ’(x ’, y ’, z ’) — движется относительно первой с неизменной скоростью поступательного движения . Примем для простоты, что в начальный момент времени они совпадали.

Запишем движение точки М в этих двух системах, задав это движение радиус-векторами и соответственно в системе S и S

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...