Роскомзем: мониторинг земель.
Министерство природных ресурсов: мониторинг недр, включая мониторинг подземных вод и опасных геологических процессов; мониторинг водной среды водохозяйственных систем и сооружений в местах водосбора и сброса сточных вод. Роскомрыболовство: мониторинг рыб, других животных и растений. Рослесхоз: мониторинг лесов. Роскартография: осуществление топографо-геодезического и картографического обеспечения ЕГСЭМ, включая создание цифровых, электронных карт и геоинформационных систем. Госгортехнадзор России: координация развития и функционирования подсистем мониторинга геологической среды, связанных с использованием ресурсов недр на предприятиях добывающих отраслей промышленности; мониторинг обеспечения промышленной безопасности (за исключением объектов Минобороны России и Минатома России). Госкомэпиднадзор России: мониторинг воздействия факторов среды обитания на состояние здоровья населения. Минобороны России; мониторинг ОПС и источников воздействия на нее на военных объектах; обеспечение ЕГСЭМ средствами и системами военной техники двойного применения. Госкомсевер России: участие в развитии и функционировании ЕГСЭМ в районах Арктики и Крайнего Севера. Технологии единого экологического мониторинга (ЕЭМ) охватывает разработку и использование средств, систем и методов наблюдений, оценки и выработки рекомендаций и управляющего воздействия в природно-техногенной сфере, прогнозы её эволюции, энерго-экологические и технологические характеристики производственной сферы, медико-биологические и санитарно-гигиенические условия существования человека и биоты. Комплексность экологических проблем, их многоаспектность, теснейшая связь с ключевыми отраслями экономики, обороны и обеспечением защиты здоровья и благополучия населения требует единого системного подхода к решению проблемы. Мониторинг в целом создан, чтобы предотвратить различные экологические проблемы, а также разрушение экосистем.
Истребление видов и разрушение экосистем Воздействие человека на биосферу привело к тому, что очень многие виды животных и растений или исчезли полностью, или стали редкими. По млекопитающим и птицам, которых легче учитывать, чем беспозвоночных, можно привести совершенно точные данные. За период с 1600 года по настоящее время человеком истреблено 162 вида и подвида птиц и 381 виду угрожает та же участь; среди млекопитающих исчезла, по меньшей мере, сотня видов и 255 находятся на пути к исчезновению. Хронологию этих печальных событий проследить не трудно. В 1627 году в Польше умер последний тур, предок нашего крупного скота. В средние века это животное ещё можно было встретить во Франции. В 1671 году исчез дронт с острова Маврикий. В 1870-1880 гг. бурами уничтожены два вида южноафриканских зебр - бурчеллова зебра и квагга. В 1914 году в зоопарке города Цинциннати (США) умер последний представитель странствующего голубя. Можно было бы привести большой список животных, находящихся под угрозой уничтожения. Чудом уцелели американский бизон и европейский зубр; азиатский лев сохранился лишь в одном из лесов Индии, где его осталось всего 150 особей; во Франции с каждым днём становится всё меньше медведей и хищных птиц. Исчезновение видов сегодня Вымирание - это естественный процесс. Однако со времени появления сельского хозяйства около 10 тысяч лет назад скорость исчезновения видов резко возрастала по мере расселения людей по всему земному шару. По приблизительным оценкам, в период между 8000 годом до н.э. средняя скорость исчезновения видов млекопитающих и птиц возросла в 1000 раз. Если включить сюда скорость исчезновения видов растений и насекомых, то скорость вымирания в 1975 году составляла несколько сотен видов в год. Если взять нижний предел в 500 000 исчезнувших видов, то к 2010 году в результате антропогенной деятельности в среднем будет исчезать 20 000 видов в год, т.е. в общей сложности 1 вид каждые 30 минут - 200-кратное увеличение скорости вымирания всего за 25 лет. Даже если среднюю скорость исчезновения в конце XX века принять за 1000 в год, общие потери будут несравнимы с великими массовыми вымираниями прошлого. Наибольшей огласке предаётся исчезновение животных. Но исчезновение растений с экологической точки зрения более важно, так как от растительной пищи прямо или косвенно зависит большинство видов животных. По оценкам, более 10% видов растений мира сегодня находятся под угрозой исчезновения. К 2010 году исчезнет от 16 до 25% всех видов растений.
Принципы комплексной характеристики состояния загрязнения природной среды Комплексная характеристика состояния загрязнения исходит из концепции всестороннего анализа окружающей среды. Главным и обязательным условием этой концепции является рассмотрение всех основных сторон взаимодействий и связей в природной среде и учёт всех аспектов загрязнения природных объектов, а также поведении загрязняющих веществ (ЗВ) и проявления их воздействия. Программа комплексного исследования загрязнений наземных экосистем В условиях возрастающей нагрузки индустриальной цивилизации, загрязнение среды превращается в глобальный фактор, определяющий развитие природной среды и здоровье человека. Перспективы такого развития общества губительны для существования развитой цивилизации. Предлагаемая программа дает возможность реально оценить комплекс проблем, связанных с организацией мониторинга окружающей среды и спланировать работу по изучению загрязнения конкретной территории. В рамках программы поставлена также задача показать, что загрязнение среды -это реально действующий и повсеместно распространенный фактор окружающей среды. Загрязнение среды - это объективная реальность и ее нельзя панически боятся. (Пример - радиофобия, т.е. психическое заболевание, связанное с постоянной боязнью радиоактивного заражения). Надо учиться жить в изменившихся условиях так, чтобы уменьшить воздействие загрязнения на свое здоровье и здоровье своих ближних. Формирование природоохранного мировоззрения - основной путь для борьбы за сохранение и улучшение качества окружающей среды. Обычно в школьных, внешкольных и вузовских программах прикладной экологии широко разбираются проблемы загрязнения водоемов и мирового океана. Особое внимание уделяется оценке состояния водоемов и местных водотоков по экологическим и гидрохимическим показателям. Существуют и действуют многочисленные программы по оценке экологического состояния водоемов. Этот вопрос хорошо отработан в методическом и научном плане.
Наземные экосистемы, неотъемлемым компонентом которых является и человек, менее изучены и в учебных курсах реже используются как модельные объекты. Это связано со значительно более сложной организацией наземной биоты. Когда мы рассматриваем наземные экосистемы, природные или в значительной степени измененные человеком, количество внутренних и внешних взаимосвязей резко возрастает, источник загрязнения или иного воздействия становится более размытым, а его воздействие идентифицируется труднее, по сравнению с водными экосистемами. Размытыми оказываются и границы экосистем и территорий, подверженных антропогенному воздействию. Однако, именно состояние наземных экосистем, т.е. территории суши, наиболее заметно и существенно влияет на качество нашей жизни. Чистота воздуха, которым мы дышим, продуктов питания и питьевой воды, которые мы потребляем, в конечном счете, связаны с состоянием загрязнения экосистем суши. С середины 50-х годов загрязнение среды приняло глобальные масштабы - в любом месте планеты можно теперь обнаружить токсичные продукты нашей цивилизации: тяжелые металлы, пестициды и другие токсичные органические и неорганические соединения. Потребовалось 20 лет для осознания учеными и правительствами стран мира необходимости создания службы контроля глобального загрязнения природной среды.
Под эгидой программы ООН по проблемам окружающей среды (ЮНЕП) было принято решение о создании Глобальной Системы Мониторинга Окружающей Среды (ГСМОС) с координационным центром в г. Найроби (Кения). На первом межправительственном совещании, проходившим в 1974 году в Найроби были приняты основные подходы к созданию комплексного фонового мониторинга. Россия является одной из первых стран мира, на территории которой к середине 80-х годов была создана национальная система комплексного фонового мониторинга Госкомгидромета. Система включает сеть станций комплексного фонового мониторинга (СКФМ), расположенных в биосферных заповедниках, на территории которых проводятся систематические наблюдения за загрязнением природных сред и состоянием животного и растительного мира. Сейчас в России действуют 7 станций фонового мониторинга Федеральной службы России ' по гидрометеорологии и мониторингу окружающей среды, распложенные в биосферных заповедниках: Приокско-Террасном, Центральнолесном, Воронежском, Астраханском, Кавказском, Баргузинском и Сихотэ-Алинском. На СКФМ проводятся наблюдения за загрязнением воздуха, осадков, поверхностных вод, почв, растительности и животных. Эти наблюдения позволяют оценить изменение фонового загрязнения среды, т.е. загрязнения, вызванного не каким-то одним или группой источников, а общее загрязнение обширной территории, вызванное суммарным воздействием близких (локальных) и удаленных источников загрязняющих веществ, а также общим загрязнением планеты. На базе этих данных можно составить комплексную характеристику загрязнения территории. Для того, чтобы составить предварительную комплексную характеристику загрязнения территории, нет необходимости в долговременном мониторинге. Важно, чтобы при проведении исследования, учитывались основные требования и принципы, на которых строится концепция комплексности исследования. Принципы комплексной характеристики состояния загрязнения природной среды. Комплексная характеристика состояния загрязнения исходит из концепции всестороннего анализа окружающей среды. Главным и обязательным условием этой концепции является рассмотрение всех основных сторон взаимодействий и связей в природной среде и учет всех аспектов загрязнения природных объектов, а также поведения загрязняющих веществ (ЗВ) и проявления их воздействия. При комплексной характеристике загрязнений ЗВ отслеживаются во всех средах, при этом большое значение придается изучению накопления (аккумуляции) того или иного ЗВ в природных объектах или определенных ландшафтах, его переходу (транслокации) из одной природной среды в другую и вызываемых под его воздействием изменений (эффектов). Проводимые комплексные исследования загрязнений призваны определить источник загрязнения, оценить его мощность и время воздействия и найти пути оздоровления среды. Подход, учитывающий перечисленные требования, принято считать комплексным.
В связи с этим, выделяют 4 основных принципа комплексности: 1. Интегральность (наблюдения за суммарными показателями). 2. Многосредность (наблюдения в основных природных средах). 3. Системность (воссоздание биохимических циклов загрязняющих веществ). 4. Многокомпонентность (анализ различных видов загрязняющих веществ). При организации долговременного мониторинга особое внимание уделяется пятому принципу - унификации методов анализа и контролю и обеспечению качества данных. Далее мы подробно охарактеризуем каждый из этих принципов. Следует обратить внимание, что при проведении комплексного исследования используются не только чисто экологические знания и методы, но также знания и методы географии, геофизики, аналитической химии, программирования и др. Интегральность Особенность интегрального подхода заключается в использовании для определения наличия загрязнений признаков реакций различных природных объектов и биоиндикаторов. Попадая в незнакомую местность, наблюдательный человек, а особенно натуралист, может по косвенным чертам определить состояние загрязнения в данной местности. Неестественный запах, задымленность горизонта, серый февральский снег, радужная пленка на поверхности водоема и многие другие черты подскажут наблюдателю повышенное промышленное загрязнение местности. В приведенном примере индикаторами состояния загрязнения местности являются неживые (абиотические) объекты - приземный воздух, поверхность снежного покрова и водоема. Наиболее широко в качестве абиотического индикатора промышленного загрязнения территории используется снеговой покров и метод его изучения - снегомерная съемка (этому методу будет посвящено одно из методических пособий данной серии). При использовании интегрального подхода особое внимание уделяется состоянию живых организмов. Так, известно, что к загрязнению воздуха в нашей полосе наиболее уязвимой оказывается сосна. При высоком уровне загрязнения воздуха окислами серы, азота и другими токсичными соединениями наблюдается общее осветление окраски хвои, суховершинность, пожелтение краёв хвоинок. В подлеске засыхает можжевельник. Через несколько часов после кислотного дождя края листьев берёзы желтеют, листья покрываются серо-жёлтым налётом ил крапинками. При обилии окислов азота в воздухе на стволах деревьев бурно развиваются водоросли, при этом исчезают эпифитные кустистые лишайники и т.д. Наличие широкопалых раков в водоёме свидетельствует о высокой чистоте воды. Метод использования живых организмов в качестве индикаторов, сигнализирующих о состоянии природной среды, называется биоиндикацией, а сам живой организм, за состоянием которого проводятся наблюдения, называют биоиндикатором. В приведенных выше примерах биоиндикаторами служили живые объекты - береза, сосна, можжевельник, эпифитные лишайники, широкопалые раки. Использование биоиндикаторов основано на реакции любого биологического организма на отрицательное воздействие. При этом, набор реакций на множественное, интегральное, отрицательное воздействие окружающей среды, как правило, весьма ограничен. Организм либо погибает, либо покидает (если может) данную местность, либо влачит жалкое существование, что можно определить визуально или с использованием различных тестов и серии специальных наблюдений (методикам биоиндикации посвящены несколько пособий данной серии). Подбор и использование биоиндикаторов - целиком в русле экологической науки, а биоиндикация - интенсивно развивающийся в метод исследования результатов воздействий. Так, например, при наблюдениях за качеством воздуха широко используются различные растения. В лесу, в каждом ярусе, можно выделить определенные виды растений, реагирующие по своему на состояние загрязнения среды. Таким образом, интегральный подход заключается в использовании природных объектов в качестве индикаторов загрязнения среды. При этом, зачастую, бывает совершенно неясно, какое конкретно вещество было причиной того или иного эффекта и делать выводы о прямой зависимости между видом-индикатором и загрязняющим веществом нельзя. Особенность интегрального подхода заключается именно в том, что тот или иной объект-индикатор только сигнализирует нам, что в данной местности что-то не в порядке. Использование биоиндикаторов для характеристики состояния загрязнения позволяет эффективно (т.е. быстро и дешево) определять наличие общего, интегрального воздействия загрязнения на среду и составлять лишь предварительные представления о химической природе загрязнения. К сожалению, точно определять химический состав загрязняющих веществ с помощью методов биоиндикации нельзя. Для того, чтобы конкретно определить, какое вещество или группа веществ оказывает наиболее губительное воздействие, необходимо использовать другие методы исследования. Точное определение вида воздействующего ЗВ, его источника и масштабов загрязнения и распространения невозможно без проведения аналитических долговременных исследований во всех природных средах. Многосредность При проведении мониторинговых исследований важен охват всех основных природных сред: атмосферы, гидросферы, литосферы (главным образом почвенного покрова - педосферы), а также биоты. Для анализа миграций ЗВ, определения мест их локализации и аккумуляции и определения лимитирующей среды необходимо проведение измерений в объектах основных природных сред. Особенно важно определить лимитирующую среду, то есть среду, загрязнение которой определяет загрязнение всех других сред и природных объектов. Также весьма важно определить пути миграции ЗВ и возможности и коэффициенты перехода (транслокации) ЗВ из одной среды (или объекта) в другую. Этим занимается наука геофизика. Основные среды (объекты), которые должны быть охвачены при проведении комплексного исследования: воздух, почва (как часть литосферы), поверхностные воды и биота. Загрязнение каждой из этих сред характеризуется по результатам анализов ЗВ в различных объектах в пределах этих сред, выбор которых имеет важное значение для получаемых результатов и выводов. Чтобы получить сведения о загрязнении определенного объекта требуется отобрать пробу для анализа. Основные принципы, которыми необходимо руководствоваться при выборе объекта и отборе проб охарактеризованы ниже. Атмосфера. Основным объектом, по которому характеризуется загрязнение атмосферы является приземный слой воздуха. Пробы воздуха для анализа отбираются на уровне 1,5 - 2 м от поверхности земли. Отбор пробы воздуха заключается, обычно в его прокачивании через фильтры, сорбент (связующее вещество) или измерительное устройство. Особые требования предъявляются к площадке отбора. Во-первых, площадка должна быть открытой и удаленной более чем на 100 м от леса. Измерения под пологом леса дают, как правило, заниженный результат и более характеризуют плотность крон, чем уровень загрязнения воздуха. Опосредованно о качестве воздуха можно судить по загрязнению атмосферных осадков (главным образом - снега и дождя). Осадки отбирают, используя большие воронки, специальные осадкосборники или просто тазы, лишь в момент их выпадения и в точке отбора проб воздуха. Иногда для характеристики загрязнения воздуха используют пробы сухих выпадений, т.е. твердых частиц пыли, постоянно осаждающихся на подстилающую поверхность. Методически это довольно сложная задача, которая, однако, достаточно просто решается методом снегомерной съемки. Поверхностные воды. Основными объектами исследования являются малые (местные) реки и озера. Особое внимание при отборе проб требуется обратить на то, что отбор воды должен проводится на 15 - 30 см ниже зеркала воды. Это связано с тем, что поверхностная пленка представляет собой граничную среду между воздухом и водой и концентрации большинства ЗВ в ней в 10-100 и более раз выше, чем в самой толще воды. О загрязнении непроточных водоемов можно судить по донным отложениям. При отборе проб важно учитывать сезон, в который происходит отбор. Различают 4 основных сезонных периода: зимняя и летняя межени (минимальный уровень) и весенний и осенний паводки (максимальный уровень). В межени уровни воды в водоемах минимальны, т.к. нет поступления воды с осадками или количество осадков меньше, чем испарение. В эти периоды роль подземных и грунтовых вод в питании наиболее велико. В периоды паводков уровень воды в водоемах и водотоках повышается, особенно весной, в период половодья. В эти сроки дождевое питание и питание за счет снеготаяния составляют максимальную долю. При этом происходит поверхностный смыв частиц грунта и с ними ЗВ в реки и озера. Для мелких рек и ручьев выделяют также дождевые паводки, характеризующиеся повышением уровня воды в течении нескольких часов или дней после дождя, что играет заметную роль в смыве ЗВ с окружающих территорий. Состояние уровня воды в водоемах важно учитывать в связи с тем, что по тому, в какой период концентрация ЗВ в воде выше, можно судить об его источнике. Если концентрация в межень выше, чем в паводок или практически не изменяется, значит ЗВ в водоток поступают с грунтовыми и подземными водами, если же наоборот - с выпадениями из атмосферы и смывом с подстилающей поверхности. Литосфера (педосфера). Основным объектом, характеризующим загрязнение подстилающей поверхности является почва, особенно ее верхние 5 сантиметров. В связи с этим, в большинстве исследований для характеристики загрязнения почвы отбирается только этот верхний слой. При отборе почвенных проб важно выделение автохтонных, то есть коренных, экосистем, сформированных на возвышенных участках коренного берега (плакора). Загрязнение почв в этих участках свидетельствует о типичном состоянии загрязнения. Как правило, это водораздельные коренные леса и верховые болота. Также необходимо проведение исследований почв в аккумулятивных ландшафтах, расположенных в понижениях и вбирающих в себя загрязнение с обширных территорий. Биота. В понятие биота включаются объекты растительного и животного мира, обитающие на исследуемой территории. На примере этих объектов контролируется содержание загрязнителей, имеющих склонность к накоплению в растениях и животных, то есть веществ, содержание которых в биологических объектах выше, чем в абиотических средах. Это явление называется биоаккумуляцией. Первопричина биоаккумуляции в том, что поступление загрязнителя в живой объект происходит значительно легче, чем его выведение или разложение. Например, радиоактивный металл стронций (Sr 90) накапливается в костной ткани животных, так как его свойства весьма близки к кальцию, который является основой минеральной составляющей костей. Организм путает эти соединения и включает стронций в состав костей. Другой пример - хлорорганические пестициды, например ДДТ. Эти вещества хорошо растворяются в жирах и плохо растворимы в воде (это свойство в химии называется липофильностью). В результате, из кишечника вещества попадают не в кровь, а в лимфу. С кровью, токсические вещества были бы доставлены к печени и почкам - органам, ответственным за разложение и выведение токсичных веществ из организма. Попав в лимфу, эти вещества распределяются по всему организму и растворяются в жирах. Таким образом, создается запас токсичных веществ в жирах. В животных и растениях накапливаются также тяжелые металлы, радионуклиды, токсичные органические соединения (пестициды, полихлориро-ванные бифенилы). Эти соединения присутствуют в животных и растениях в ультрамалых концентрациях (менее 10 мг/кг), для определения которых необходимо использовать сложное аналитическое оборудование. Системность Частично мы уже говорили о необходимости учитывать взаимосвязи сред и объектов при отборе проб. Идеальная система исследований должна быть в состоянии проследить путь ЗВ от источника до стока, и от выходной точки до мишени (объекта воздействия). Система мониторинга должна работать таким образом, чтобы, изучая взаимодействия между средами, описывать пути биохимического круговорота веществ. Для этого и используется системный подход, позволяющий создавать модели переноса. На суше основным путем распространения и переноса ЗВ является атмосфера. Поступление веществ связано с концентрацией их в воздухе и выпадениями из атмосферы с осадками и сухими выпадениями. Вынос происходит реками, ручьями и поверхностным смывом в период снеготаяния и дождя. Выноса за пределы территории может и не быть, а вещества аккумулируются в так называемых аккумулятивных ландшафтах - низинных болотах, понижениях, оврагах и озерах. Чтобы связать все обследованные компоненты в единую систему необходим сбор параметров основных абиотических и биотических показателей объектов и экосистем в целом. Основными абиотическими показателями являются: Климатические: 1) Температура воздуха и давление - для приведения объема прокаченного воздуха при отборе проб к нормальным условиям, а также для моделирования процесса переноса ЗВ. 2) Скорость и направление ветра - пути переноса ЗВ от источника, идентификация источника, моделирование процесса переноса, наблюдения за выбросом от предприятия (источника). 3) Количество осадков - вычисление выпадений ЗВ из атмосферы. Гидрологические: уровень воды, скорость течения и объем стока - необходимы для определения времени отбора проб и расчета объема выноса ЗВ и определения источника (пути поступления). Почвенные: объемный вес почвы, тип и генетические горизонты, механический состав. Все это необходимо исследовать для определения плотности загрязнения и биологической емкости почв. Важно также учитывать аэрированность, дренированность и обводненность почв. Эти показатели характеризуют интенсивность обеззараживания загрязнителей. Например, в анаэробных условиях (без доступа кислорода в почве преобладают восстановительные реакции) и в условиях повышенного увлажнения (признаком чего являются следы оглеения на почвенном профиле) большинство пестицидов и других сложных углеводородов (например полихлорированные бифенилы) довольно быстро разлагаются или пожираются анаэробными микроорганизмами. Биотические параметры: ключевые параметры экосистем собираются для обнаружения эффекта загрязнения и для расчета биогеохимических циклов и транслокаций ЗВ в экосистемах. Основными параметрами являются: продуктивность, опад, суммарная биомасса и фитомасса. Важной характеристикой, которую используют при организации долговременного мониторинга состояния природных экосистем является скорость разложения опада. Разработаны специальные тесты, позволяющие контролировать скорость разложения. При высоком уровне загрязнения скорость разложения опада снижается. Многокомпонентность Современная индустрия и сельское хозяйство использют огромное количество токсичных соединений и элементов и, соответственно, являются мощными источниками загрязнения окружающей среды. Многие из них являются ксенобиотиками, т.е. синтетическими веществами, не свойственными живой природе. Причиной ухудшения экологической обстановки и угнетения биоты может быть любое из веществ. Контроль по всему спектру загрязнителей до недавнего времени был практически невозможен. Тенденции развития аналитических методов и приборов привели к тому, что сейчас вполне реально получить информацию об ультрамалых концентрациях практически всех веществ. Однако, эти приборы слишком дороги для широкого внедрения в практику, да в этом и нет необходимости. Достаточно выделить наиболее опасные или наиболее информативные вещества, и по ним проводить тщательный контроль. При этом, естественно, приходится мирится с имеющимися в распоряжении инструментальными методами анализа. В программе ГСМОС выделены основные, наиболее опасные (приоритетные) загрязнители и наиболее важные среды для их контроля (табл. 1). Чем выше класс приоритетности, тем выше их опасность для биосферы и тем тщательнее контроль. Данные по основным приоритетным загрязнителям необходимы и достаточны для проведения комплексной характеристики загрязнения территории. Многие из них показательны для целого класса загрязнителей. Условно, загрязнители по поведению в природной среде можно разделить на 3 типа: 1. Вещества, не склонные к накоплению в природных средах и к переходу из одной среды в другую (транслокации). Как правило, это газообразные соединения. Приоритетная среда наблюдений - воздух. 2. Вещества, частично склонные к накоплению, в основном в абиотических средах, а так же мигрирующие в различных средах. К таким веществам относятся нитраты и другие удобрения, некоторые пестициды, нефтепродукты и др.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|