Основные структурные алгоритмические конструкции
⇐ ПредыдущаяСтр 2 из 2 Элементарные шаги алгоритма можно объединить в следующие алгоритмические конструкции: линейные (последовательные), разветвляющиеся, циклические с предусловием и циклические с постусловием. Любой алгоритм можно составить, используя эти четыре алгоритмические конструкции. Линейной называют алгоритмическую конструкцию, реализованную в виде последовательности действий (шагов), в которой каждое действие (шаг) алгоритма выполняется ровно один раз, причем после каждого i -го действия (шага) выполняется (i+1)-е действие (шаг), если i -е действие — не конец алгоритма. Разветвляющейся (или ветвящейся) называется алгоритмическая конструкция, обеспечивающая выбор между двумя альтернативами в зависимости от значения входных данных. При каждом конкретном наборе входных данных разветвляющийся алгоритм сводится к линейному. Различают неполное (если – то) и полное (если – то – иначе) ветвления. Полное ветвление позволяет организовать две ветви в алгоритме (то или иначе), каждая из которых ведет к общей точке их слияния, так что выполнение алгоритма продолжается независимо от того, какой путь был выбран (рис. 1). Неполное ветвление предполагает наличие некоторых действий алгоритма только на одной ветви (то), вторая ветвь отсутствует, т.е. для одного из результатов проверки никаких действий выполнять не надо, управление сразу переходит к точке слияния. Рис. 1. Полное ветвление Циклической (или циклом) называют алгоритмическую конструкцию, в которой некая, идущая подряд группа действий (шагов) алгоритма можем выполняться несколько раз, в зависимости от входных данных или условия задачи. Группа повторяющихся действий на каждом шагу цикла называется телом цикла. Любая циклическая конструкция содержит в себе элементы ветвящейся алгоритмической конструкции.
Цикл с предусловием. В данной циклической структуре сначала проверяется значение условного выражения (условие) перед выполнением очередного шага цикла. Если значение условного выражения истинно, исполняется тело цикла. После чего управление вновь передается проверке условия и т.д. Эти действия повторяются до тех пор, пока условное выражение не примет значение ЛОЖЬ. При первом же несоблюдении условия цикл завершается. Количество шагов цикла заранее не определено и зависит от входных данных задачи. Особенностью цикла с предусловием является то, что если изначально условное выражение ложно, то тело цикла не выполнится ни разу.
Цикл с постусловием. Как и в цикле с предусловием, в циклической конструкции с постусловием заранее не определено число повторений тела цикла, оно зависит от входных данных задачи. В отличие от цикла с предусловием, тело цикла с постусловием всегда будет выполнено хотя бы один раз, после чего проверяется условие. В этой конструкции тело цикла будет выполняться до тех пор, пока значение условного выражения ложно (условие "окончания" цикла). Как только оно становится истинным, выполнение команды прекращается. Возможно построение цикла и с условием "продолжения" цикла, т.е. тело цикла будет выполняться до тех пор, пока значение условия истинно. Блок-схема данной конструкции представлена на рис. 3 двумя способами: с помощью условного блока а и с помощью блока управления б.
Рис. 3. Блок-схема цикла с постусловием Рассмотрим три типа циклических алгоритмов: цикл с параметром (который называют арифметическим циклом), цикл с предусловием и цикл с постусловием (их называют итерационными).
Существует разновидность цикла с предусловием, называемая арифметический цикл. В арифметическом цикле число его шагов (повторений) однозначно определяется правилом изменения параметра, которое задается с помощью начального (N) и конечного (К) значений параметра и шагом (h) его изменения. Т.е., на первом шаге цикла значение параметра равно N, на втором – N + h, на третьем – N + 2h и т.д. На последнем шаге цикла значение параметра не больше К, но такое, что дальнейшее его изменение приведет к значению, большему; чем К. Например, вывести 10 раз слово «Привет!». Его блок-схема использует специальный блок начала арифметического цикла с указанием, что переменная i в нем будет изменяться от 1 до 10 с шагом 1.
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|