Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Разгон процессора. Что еще нужно знать




 

Путем разгона можно получить прирост производительности в 10-50% (иногда и более). Если ваш компьютер работает в целом неплохо, но количество кадров в секунду в новой игре у вас 25-30, то тут может помочь разгон. С его помощью можно будет выбить, предположим, нормальные 30-40 кадров (возможно придётся в добавок и видеокарту разогнать немного).

Зависимость разгона от технологии изготовления (0.18мкм, 0.13мкм и. т. п.).

Чем меньше технология, тем меньше размеры самого кристалла и его энергопотребление. Следовательно, ниже тепловыделение. Этот параметр представлен в микрометрах: чем меньше число, тем лучше будут разгонные качества данного ядра (а, значит, и самого процессора). Нужно помнить, что если производитель уже довел частоту ядра изготовленного по какой-то технологии почти до верхней границы, то разогнать процессор будет сложно. К примеру, Celeron (ядро Mendocino) 333Mhz часто разгоняется аж до 600 МГц, а Celeron 533Mhz (то же ядро) разогнать получается часто только до 600Mhz - эта частота фактически предел для ядра.

По шине процессор эффективнее разгонять, так как разгоняются при этом память и шина AGP (шина видеокарты). Следовательно, повышается пропускная способность всех этих шин, а это очень полезно. Но если вы хотите минимизировать возможные последствия от разгона, то можете ограничиться повышением коэффициента, если есть такая возможность (процессоры Intel её не имеют).

Не стоит разгонять ноутбуки. Просто в ноутбуке затруднено охлаждение и все очень точно подогнано под какой-то более-менее определённый процессор. Возможности разгона чаще всего очень малы, а могут и вообще отсутствовать. Надо помнить, что при разгоне увеличивается потребляемая мощность и тепловыделение процессора, а следовательно у ноутбука сокращается срок работы от батарей и увеличивается температура.

Стоит брать память известных производителей, она дороже, но стабильнее при разгоне. Наиболее удачными и популярными являются модули Kingston, Infineon, Hyundai (Hynix), Samsung и др. Если есть возможность, лучше поставить память с запасом, т. е. на плату, в штатном режиме работающую с памятью на 333Mhz, взять память, которая держит 400Mhz. Это даст гарантию отсутствия ошибок при разгоне памяти до данной частоты. Ну и любителям форсировать свою систему стоит подумать о том, чтоб обзавестись оверклокерской памятью. Очень не рекомендуется повышать напряжение более чем на 25%, это может быть фатально для процессора. А лучше ограничится 10-15%. Смысл в этом часто есть: повышается стабильность работы и открывается возможность разогнать побольше.

При разгоне естественно температура будет увеличиваться, даже если вы не будете поднимать напряжение. Вообще рекомендуется поставить какую либо программу мониторинга температуры. Лучше родную (поставляющуюся с материнской платой), но можно и какую-либо универсальную вроде MBProbe, Motherboard Monitor и др. А если в биосе есть функция отключения / предупреждения при превышении какой-то температуры, то лучше ей воспользоваться - установить 70 градусов в качестве такой температуры, например. Сколько ватт мощности потребляет ваш процессор (чем больше - тем больше греется) можно посмотреть например при помощи программы Everest она так же показывает температуру процессора и материнской платы и винчестера и т. д. (при условии наличия термодатчиков).

Нужен при нормальном форсировании и хороший кулер с удачным алюминиевым радиатором. Кулеры с медными радиаторами могут быть значительно лучше из-за лучшей теплопроводности меди, но они иногда сильно хуже по причине непродуманной конструкции. Из фирм-производителей можно посоветовать Thermaltake, Titan, CoolerMaster, Zalman(показывает очень хорошие результаты в тестированиях). Так называемый NoName лучше не брать: процессор может сильно пострадать из-за остановившегося, или просто плохого кулера. Стоит так же отметить, что бежать в магазин и менять боксовый кулер от процессора на самый крутой не всегда нужно, он не так плох. Ну а если вам его недостаточно, то можно и сменить. Можно применять так же жидкий азот(любителям поставить рекорд разгона, но при этом нужна довольно серьезная модификация материнской платы, требует хороших знаний и желания повесить материнскую плату на стенку, в качестве трофея, после успешного эксперимента), водяное охлаждение и некоторые другие методы. Первое вообще не реально в наших условиях. Второй вариант более реален, но требует самостоятельного изготовления системы охлаждения или покупки её за весьма немалые деньги (не менее 100$). Причём это не самый надёжный способ: если что-то протечёт, почти гарантирован выход чего-нибудь из строя. А если остановится кулер, то пострадает только процессор (ну, в худшем случае ещё и материнская плата). Но ничего лучше водяного охлаждения для экстремального разгона в домашних условиях пока не придумали. Естественно большое значение имеет корпус. Нужно брать корпус с горизонтально расположенным блоком питания и наибольшим количеством мест под дополнительные вентиляторы.

После разгона. Лучше всего запустить какое-то приложение типа 3Dmark на парочку часов. Если после длительного прогона тестов ошибок не возникло, то все, скорее всего, удачно. Можно поэкспериментировать с архивацией и последующей разархивацией больших объёмов данных (>=500Mb) при помощи WinRAR. Если появились ошибки в контрольной сумме (CRC error), то нужно выяснять источник ошибки. Им может быть процессор, память, а иногда материнская плата. Так же есть полезная программа под названием CPU Stability Test, её нужно запустить надолго и если не повиснет, значит с процессором все OK. Память стоит отдельно проверить программой вроде TestMem под DOS.

Последствия неудачного разгона. В первую очередь процессор - он может сгореть. Ну и, естественно, сокращается срок службы всех комплектующих, подвергающихся разгону. На штатной частоте процессор служит в теории где-то 10 лет, а на повышенной меньше. Но сейчас это не актуально, так как больше 5 лет процессор обычно и не используется (он безнадёжно устаревает за это время, так что о этом не волнуемся. Оперативная память не особо страдает от разгона, но часто является источником ошибок. Пострадать может винчестер, но уже сразу по двум причинам: на него может повлиять понижение/повышение напряжения, выдаваемого слабым блоком питания, или он может не выдержать повышения шины PCI (частоты больше 40Mhz нежелательны). Действие первой причины я имел счастье сам наблюдать у моего старого винчестера, он угробился от нехватки питания всего за пол года (Samsung, отработал без ошибок 4 года). Некоторые модели IDE-дисков, поддерживающие Ultra DMA, чувствительны к частоте шины PCI и при выставлении нестандартных частот иногда возможна потеря данных. При этом сам жесткий диск как правило остается работоспособным, однако в некоторых случаях могут пострадать сервометки, после чего винчестер будет проще выбросить, чем пытаться исправить (вероятность этого невелика). Избежать подобных проблем обычно можно изменением режима работы винчестера - заставив его работать исключительно в PIO режиме. Но это не рекомендуется, система будет хуже работать - дополнительная нагрузка на процессор делает почти бессмысленным разгон в этом случае. Так что если разгоняете сильно, то запаситесь БП с запасом мощности (300W) и будьте осторожны с повышением шины PCI. Выход из строя видеокарты и других плат от повышения частот работы их шины (что пока почти неизбежно при разгоне системной шины) маловероятен, но возможен. Могут быть попорчены ваши программы, которые вы будете запускать для тестирования. Иногда от неудачной попытки разгона перестаёт загружаться Windows, в случае если важные файлы были повреждены из-за ошибок процессора. Решить эту проблему можно в большинстве случаев только переустановкой ОС (или при помощи функции "repair" в Setup`е, если у вас Win2K/XP).

Процессор сгорел? Стоит убедиться, что дело именно в процессоре. Если из корпуса идёт дым и пахнет палёным, возможно так и есть. Но если компьютер просто не загружает Windows, выводится только заставка BIOS или он пищит (в случае отказа / отсутствия процессора компьютер не пищит), то причина в другом. Например, в контроллере IDE или видеокарте. Стоит попробовать вытащить из разъемов на материнской плате шлейфы жестких дисков и CD-ROM, а также все платы. Следует помнить, что некоторые экземпляры могут просто не запуститься на той частоте FSB, которую вы поставили. В таком случае нужно снизить разгон. Тогда может помочь обнуление настроек BIOS (если разгоняли с его помощью), его можно осуществить воспользовавшись соответствующим джампером на материнской плате (на всех современных платах он присутствует) или временным отключением батарейки (еcли джампера все же нет). Все настройки при этом примут изначальное положение.

FPU, Ядро,Степпинг

FPU, это Floating Point Unit.

А проще говоря, блок, производящий операции с плавающей точкой (часто говорят запятой) или математический сопроцессор. FPU помогает основному процессору выполнять математические операции над вещественными числами. Здесь следует уточнить, что сначала он применялся опционально, в качестве дополнительного процессора. Непосредственно в кристалл процессора FPU был впервые интегрирован в 1989 году (процессор Intel 80486).

Ядро. Ядром называют сам процессорный кристалл, ту часть, которая непосредственно является "процессором". Сам кристалл у современных моделей имеет небольшие размеры, а размеры готового процессора увеличиваются очень сильно за счет его корпусировки и разводки. Процессорный кристалл можно увидеть, например, у процессоров Athlon, у них он не закрыт. У P4 вся верхняя часть скрыта под теплорассеивателем (который так же выполняет защитную функцию, сам по себе кристалл не так уж прочен). Процессоры, основанные на разных ядрах, это можно сказать разные процессоры, они могут отличаться по размеру кэш памяти, частоте шины, технологии изготовления и т. п. В большинстве случаев, чем новее ядро, тем лучше процессор разгоняется. В качестве примера можно привести P4, существуют два ядра - Willamette и Northwood. Первое ядро производилось по 0.18мкм технологии и работало исключительно на 400Mhz шине. Самые младшие модели имели частоту 1.3Ghz, максимальные частоты для ядра находились немного выше 2,2Ghz. Своими разгонными качествами эти процессоры особо не славились. Позже был выпущен Northwood. Он уже был выполнен по 0.13мкм технологии и поддерживал шину в 400 и 533Mhz, а также имел увеличенный объём кэш памяти. Переход на новое ядро позволил значительно увеличить производительность и максимальную частоту работы. Младшие процессоры Northwood прекрасно разгоняются, но фактически разгонный потенциал этих процессоров основан на более "тонком" техпроцессе.

Степпинг означает поколение ядра процессора. При исправлении мелких недочетов или ошибок в микрокоде выпускается новая модификация, или поколение, процессорного ядра при этом сохраняются архитектура кристалла и сама технология производства в целом. По логике, чем больше степпинг, тем стабильнее себя ведет и лучше разгоняется процессор.

Платформы 2008-2009 Intel

Будущее мобильных платформ AMD, которое обещает стать высокоинтегрированным вплоть до размещения на одном кристалле вычислительных и графических ядер. Компания, кстати, вводит новый термин для обозначения подобных процессоров – APU (Accelerated Processing Unit). Это означает, что интегрироваться на кристалл с процессором будет не только графическое ядро, но и любой другой специализированный ускоритель. Директор по технологиям Intel Патрик Гелсингер в рамках краткой пресс-конференции 18 марта рассказал о планах корпорации по выпуску новых многоядерных процессоров. В основном речь шла о 4- и 6-ядерных серверных и настольных процессорах. Он сообщил, что во второй половине текущего года на рынке появятся серверные процессоры Xeon с кодовым названием Dunnington. Эти чипы будут изготавливаться по 45-нанометровой технологии, иметь шесть ядер и общий кэш третьего уровня большого размера (по имеющейся информации, 16 Мб). Благодаря поддержке системы FlexMigration, серверы на основе процессоров Dunnington можно будет добавлять в единую динамическую виртуальную инфраструктуру, поддерживающую миграцию виртуальных машин. Далее Патрик Гелсингер остановился на будущих серверных чипах Itanium, известных под названием Tukwila. Ожидается, что Tukwila станет первым процессором на рынке, насчитывающим более двух миллиардов транзисторов. Чип получит четыре ядра и будет работать на тактовой частоте до 2 ГГц, а объем кэш-памяти составит 30 Мб. При таких характеристиках Tukwila будет потреблять примерно на 25% больше энергии по сравнению со своим предшественником - чипом Montvale.

Важным этапом в развитии аппаратных платформ Intel, по словам Гелсингера, станет появление новой архитектуры Nehalem. В Intel отмечают, что переход на архитектуру Nehalem позволит добиться значительного повышения производительности при одновременном снижении энергопотребления. Платформа Nehalem будет использовать новую системную архитектуру QuickPath Interconnect, включающую встроенный контроллер памяти и усовершенствованные каналы связи между компонентами. Процессоры на основе Nehalem получат от двух до восьми ядер и благодаря технологии Simultaneous Multi-threading смогут одновременно обрабатывать от четырех до шестнадцати потоков инструкций. Объем кэш-памяти третьего уровня сможет достигать 8 Мб.

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...