Поглощение (абсорбция) света веществом. Закон Бугера. Элементарная квантовая теория излучения и поглощения света. Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна. Условие усиления света
Под действием электромагнитного поля световой волны, проходящей через вещество, возникают колебания электронов среды, с чем связано уменьшение энергии излучения, затрачиваемой на возбуждение колебаний электронов. Частично эта энергия восполняется в результате излучения электронами вторичных волн, частично она может преобразовываться в другие виды энергии. Если на поверхность вещества падает параллельный пучок света (плоская волна) с интенсивностью I, то указанные процессы обусловливают уменьшение интенсивности I по мере проникновения волны в вещество. Действительно, опытным путем установлено, а затем и теоретически доказано Бугéром, что интенсивность излучения убывает в соответствии с законом (закон Бугéра): , (1) где – интенсивность излучения, вошедшего в вещество, d – толщина слоя, – коэффициент поглощения, зависящий от рода вещества и длины волны. Выразим коэффициент поглощения из закона Бугера: . (2) Численное значение этого коэффициента соответствует толщине слоя , после прохождения которого интенсивность плоской волны уменьшается в е = 2,72 раз. Измеряя экспериментально значения интенсивности I1 и I2, соответствующие прохождению световых пучков одинаковой начальной интенсивности через слои вещества толщиной и соответственно, можно определить значение коэффициента поглощения из соотношения . (3) Зависимость коэффициента поглощения от длины волны обычно представляют в виде таблиц или графиков (набор паспортов цветных светофильтров). Пример – на рисунке 1.
Особенно замысловатый вид имеют спектры поглощения паров металлов при невысоком давлении, когда атомы практически можно считать не взаимодействующими друг с другом. Коэффициент поглощения таких паров очень мал (близок к нулю) и только в очень узких спектральных интервалах (шириной в несколько тысячных долей нанометра) в спектрах поглощения обнаруживаются резкие максимумы (рисунок 2).
Отмеченные области резкой абсорбции атомов соответствуют частотам собственных колебаний электронов внутри атомов. Если речь идет о спектрах поглощения молекул, то регистрируются также полосы поглощения, соответствующие частотам собственных колебаний атомов в молекуле. Так как массы атомов значительно больше массы электрона, то эти полосы поглощения смещены в инфракрасную область спектра. Спектрам поглощения твердых тел и жидкостей, как правило, характерны широкие полосы поглощения. В спектрах поглощения многоатомных газов регистрируются широкие полосы поглощения, для спектров одноатомных газов характерны резкие линии поглощения. Такое различие в спектрах одно- и многоатомных газов свидетельствует о том, что причиной расширения спектральных полос является взаимодействие между атомами. Закон Бугера выполняется в широком интервале значений интенсивности света (как установил С.И. Вавилов, при изменении интенсивности в 1020 раз), в котором показатель поглощения не зависит ни от интенсивности, ни от толщины слоя. Для веществ с большим временем жизни возбужденного состояния при достаточно большой интенсивности света коэффициент поглощения уменьшается, так как значительная часть молекул находится в возбужденном состоянии. При таких условиях закон Бугера не выполняется. Рассматривая вопрос о поглощении света средой, плотность которой не везде одинакова, Бугер утверждал, что «свет может претерпевать равные изменения, лишь встречая равное число частиц, способных задерживать лучи или рассеивать их», и что, следовательно, для поглощения имеют значение «не толщины, а массы вещества, содержащегося в этих толщинах». Этот второй закон Бугера имеет большое практическое значение при изучении поглощения света растворами веществ в прозрачных (практически не поглощающих) растворителях. Коэффициент поглощения для таких растворов пропорционален числу поглощающих молекул на единицу длины пути световой волны, то есть концентрации раствора с:
, где А – коэффициент пропорциональности, зависящий от рода вещества и не зависящий от концентрации. После учета этого соотношения закон Бугера принимает вид: . Утверждение о независимости коэффициента А от концентрации вещества и его постоянстве часто называют законом Бера (или Беера). Физический смысл этого утверждения состоит в том, что способность молекул к поглощению излучения не зависит от окружающих молекул. Однако имеются многочисленные отступления от этого закона, который поэтому, скорее, правило, а не закон. Значение величины А изменяется для близко расположенных молекул; зависит оно и от вида растворителя. Если отступления от обобщенного закона Бугера отсутствуют, то его удобно использовать в целях определения концентрации растворов. Спектры поглощения веществ используются для спектрального анализа, то есть для определения состава сложных смесей (качественный и количественный анализ). Поглощение излучения веществом объясняется на основе квантовых представлений. Квантовые переходы атомной системы из одного стационарного состояния в другое обусловлены получением извне или передачей энергии этой системой другим объектам или ее излучением в окружающее атом пространство. Переходы, при которых атомная система поглощает, испускает или рассеивает электромагнитное излучение, называются радиационными (или излучательными). Каждому радиационному переходу между энергетическими уровнями и в спектре соответствует спектральная линия, характеризующаяся частотой и некоторой энергетической характеристикой излучения, испущенного (для спектров испускания), поглощенного (для спектров поглощения) или рассеянного (для спектров рассеяния) атомной системой. Переходы, при которых происходит непосредственный обмен энергией данной атомной системы с другими атомными системами (столкновения, химическая реакция и т. д.), называются нерадиационными (или безызлучательными).
Основными характеристиками энергетического уровня являются: – степень (кратность) вырождения, или статистический вес – это число различных стационарных состояний (функций состояния), которым соответствует энергия ; – населенность – это число частиц данного сорта в единице объема, имеющих энергию ; – время жизни возбужденного состояния – это средняя продолжительность пребывания частицы в состоянии с энергией . Спектральное положение линии (полосы), т.е. частоту линии можно определить, применяя правило частот Бора . (4) Квантовые переходы характеризуют коэффициентами Эйнштейна , физический смысл которых поясним позже. На примере простейшей – двухуровневой – системы проанализируем, какими внутренними характеристиками атомной системы определяется интенсивность спектральной линии. Пусть и – два энергетических уровня изолированной атомной системы (атома или молекулы), населенность которых соответственно обозначим N1 и N2 (рисунок 3).
Число частиц в единице объема, совершающих за время dt при стационарном режиме возбуждения переходы , сопровождающиеся поглощением энергии электромагнитного излучения, определим в соответствии с формулой: , (5) где – объемная спектральная плотность энергии внешнего (возбуждающего) излучения, частота которого . При этом частицами, переведенными в возбужденное состояние с энергией в единичном объеме вещества, поглощается энергия . (6) Из выражения (5) видно, что (7) – это вероятность перехода за единицу времени, сопровождающегося поглощением, в расчете на одну частицу. Таким образом, коэффициент Эйнштейна имеет вероятностный (статистический) смысл. Процесс испускания электромагнитного излучения может происходить в соответствии с двумя механизмами: спонтанно (вследствие внутренних причин) и вынужденно (при воздействии возбуждающего излучения). Общее число частиц, совершающих за время dt спонтанные переходы , прямо пропорциональна населенности уровня, соответствующего исходному состоянию системы:
. (8) Энергию электромагнитного излучения, спонтанно испущенного атомами (молекулами), находящимися в единичном объеме вещества, за время ,можно представить в виде: . (9) Из формулы (8) выразим величину : (10) – коэффициент Эйнштейна, имеющий смысл вероятности перехода, сопровождающегося спонтанным испусканием электромагнитного излучения одной частицей за единицу времени. Вынужденное испускание происходит под действием внешнего (вынуждающего) излучения. в рассматриваемой системе уровней прямо Число вынужденных излучательных переходов за время dt пропорционально населенности N2 уровня, соответствующего исходному состоянию системы (E2) и объемной спектральной плотности энергии внешнего (возбуждающего) излучения u12: . (11) Энергия вынужденного излучения, испущенного в единичном объеме вещества за время dt,запишем в виде: . (12) Из формулы (11) легко выделить величину (13) – вероятность перехода, совершаемого одной частицей за единицу времени и сопровождающегося вынужденным испусканием. Здесь – коэффициент Эйнштейна для вынужденных излучательных переходов. Hа основе изложенных представлений установлены соотношения между коэффициентами Эйнштейна, для рассматриваемых переходов имеющие вид: , (14) где и – статистические веса энергетических уровней и . Таким образом, внутренними параметрами атомной системы, определяющими энергию электромагнитного излучения, поглощённого или испущенного веществом, и, следовательно, – интенсивность спектральных линий в регистрируемом спектре, являются вероятности переходов в единицу времени, то есть коэффициенты Эйнштейна. При относительно невысоких значениях объемной плотности возбуждающего излучения полная вероятность испускания практически полностью определяется вероятностью спонтанных переходов с испусканием энергии. При высокой мощности облучения вероятность вынужденного испускания может стать существенно больше вероятности спонтанного испускания. Такая ситуация имеет место в активной среде генерирующего лазера, а также при использовании лазера в качестве источника возбуждающего излучения. Таким образом, существует только один тип элементарных процессов, который может быть использован для усиления оптического излучения, а именно: вынужденные переходы с излучением. В соответствии с выражением (13) вероятность таких переходов можно повысить, увеличивая спектральную плотность энергии "вынуждающего" излучения . С другой стороны, c определенной вероятностью количество вынужденных переходов в единицу времени, определяющее мощность вынужденного излучения, зависит также и от населенности верхнего энергетического уровня N2.
Баланс энергии в единице объема вещества, за единицу времени излучаемой в результате вынужденных переходов и поглощаемой в результате вынужденных переходов с возбуждением атома, можно представить в виде: (16) Учитывая, что g1B12= g2B21, формулу (16) можно переписать в виде: . (17) В естественных условиях в соответствии с распределением Максвелла-Больцмана всегда и ΔW < 0, т.е. распространение излучения в среде обязательно сопровождается уменьшением его интенсивности. Чтобы среда усиливала падающее на нее излучение (ΔW > 0), необходимо, чтобы выполнялось условие или (в отсутствие вырождения) N2 > N1. Другими словами, равновесное распределение населенностей должно быть нарушено таким образом, чтобы состояния с большей энергией были заселены сильнее, чем состояния с меньшей энергией. Среда, находящаяся в неравновесном состоянии, при котором распределение населенностей хотя бы для двух уровней энергии инвертировано (обращено) по отношению к распределению Максвелла—Больцмана, называется инверсной. Такие среды обладают отрицательным коэффициентом поглощения α (см. (1) – закон Бугера), т.е. при прохождении сквозь них излучения его интенсивность увеличивается. Такие среды называют активными. Для усиления света в активной среде энергия, излучаемая в единицу времени, должна превышать суммарные потери энергии, обусловленные поглощением излучения в среде и полезными потерями, то есть выведением излучения из среды в направлении распространения излучения (например, полезные потери составляет энергия излучения лазера).
Воспользуйтесь поиском по сайту: ©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|