Поглощение (абсорбция) света веществом. Закон Бугера. Элементарная квантовая теория излучения и поглощения света. Спонтанные и вынужденные переходы. Коэффициенты Эйнштейна. Условие усиления света
Под действием электромагнитного поля световой волны, проходящей через вещество, возникают колебания электронов среды, с чем связано уменьшение энергии излучения, затрачиваемой на возбуждение колебаний электронов. Частично эта энергия восполняется в результате излучения электронами вторичных волн, частично она может преобразовываться в другие виды энергии. Если на поверхность вещества падает параллельный пучок света (плоская волна) с интенсивностью I, то указанные процессы обусловливают уменьшение интенсивности I по мере проникновения волны в вещество. Действительно, опытным путем установлено, а затем и теоретически доказано Бугéром, что интенсивность излучения убывает в соответствии с законом (закон Бугéра):
где
Численное значение этого коэффициента соответствует толщине слоя
Особенно замысловатый вид имеют спектры поглощения паров металлов при невысоком давлении, когда атомы практически можно считать не взаимодействующими друг с другом. Коэффициент поглощения таких паров очень мал (близок к нулю) и только в очень узких спектральных интервалах (шириной в несколько тысячных долей нанометра) в спектрах поглощения обнаруживаются резкие максимумы (рисунок 2).
Отмеченные области резкой абсорбции атомов соответствуют частотам собственных колебаний электронов внутри атомов. Если речь идет о спектрах поглощения молекул, то регистрируются также полосы поглощения, соответствующие частотам собственных колебаний атомов в молекуле. Так как массы атомов значительно больше массы электрона, то эти полосы поглощения смещены в инфракрасную область спектра. Спектрам поглощения твердых тел и жидкостей, как правило, характерны широкие полосы поглощения. В спектрах поглощения многоатомных газов регистрируются широкие полосы поглощения, для спектров одноатомных газов характерны резкие линии поглощения. Такое различие в спектрах одно- и многоатомных газов свидетельствует о том, что причиной расширения спектральных полос является взаимодействие между атомами. Закон Бугера выполняется в широком интервале значений интенсивности света (как установил С.И. Вавилов, при изменении интенсивности в 1020 раз), в котором показатель поглощения не зависит ни от интенсивности, ни от толщины слоя. Для веществ с большим временем жизни возбужденного состояния при достаточно большой интенсивности света коэффициент поглощения уменьшается, так как значительная часть молекул находится в возбужденном состоянии. При таких условиях закон Бугера не выполняется. Рассматривая вопрос о поглощении света средой, плотность которой не везде одинакова, Бугер утверждал, что «свет может претерпевать равные изменения, лишь встречая равное число частиц, способных задерживать лучи или рассеивать их», и что, следовательно, для поглощения имеют значение «не толщины, а массы вещества, содержащегося в этих толщинах». Этот второй закон Бугера имеет большое практическое значение при изучении поглощения света растворами веществ в прозрачных (практически не поглощающих) растворителях. Коэффициент поглощения для таких растворов пропорционален числу поглощающих молекул на единицу длины пути световой волны, то есть концентрации раствора с:
где А – коэффициент пропорциональности, зависящий от рода вещества и не зависящий от концентрации. После учета этого соотношения закон Бугера принимает вид:
Утверждение о независимости коэффициента А от концентрации вещества и его постоянстве часто называют законом Бера (или Беера). Физический смысл этого утверждения состоит в том, что способность молекул к поглощению излучения не зависит от окружающих молекул. Однако имеются многочисленные отступления от этого закона, который поэтому, скорее, правило, а не закон. Значение величины А изменяется для близко расположенных молекул; зависит оно и от вида растворителя. Если отступления от обобщенного закона Бугера отсутствуют, то его удобно использовать в целях определения концентрации растворов. Спектры поглощения веществ используются для спектрального анализа, то есть для определения состава сложных смесей (качественный и количественный анализ). Поглощение излучения веществом объясняется на основе квантовых представлений. Квантовые переходы атомной системы из одного стационарного состояния в другое обусловлены получением извне или передачей энергии этой системой другим объектам или ее излучением в окружающее атом пространство. Переходы, при которых атомная система поглощает, испускает или рассеивает электромагнитное излучение, называются радиационными (или излучательными). Каждому радиационному переходу между энергетическими уровнями
Основными характеристиками энергетического уровня – степень (кратность) вырождения, или статистический вес – населенность – время жизни возбужденного состояния Спектральное положение линии (полосы), т.е. частоту линии можно определить, применяя правило частот Бора
Квантовые переходы характеризуют коэффициентами Эйнштейна На примере простейшей – двухуровневой – системы проанализируем, какими внутренними характеристиками атомной системы определяется интенсивность спектральной линии. Пусть
Число частиц в единице объема, совершающих за время dt при стационарном режиме возбуждения переходы
где При этом частицами, переведенными в возбужденное состояние с энергией
Из выражения (5) видно, что
– это вероятность перехода Процесс испускания электромагнитного излучения может происходить в соответствии с двумя механизмами: спонтанно (вследствие внутренних причин) и вынужденно (при воздействии возбуждающего излучения). Общее число частиц, совершающих за время dt спонтанные переходы
Энергию электромагнитного излучения, спонтанно испущенного атомами (молекулами), находящимися в единичном объеме вещества, за время
Из формулы (8) выразим величину
– коэффициент Эйнштейна, имеющий смысл вероятности перехода, сопровождающегося спонтанным испусканием электромагнитного излучения одной частицей за единицу времени. Вынужденное испускание происходит под действием внешнего (вынуждающего) излучения. в рассматриваемой системе уровней прямо Число вынужденных излучательных переходов за время dt пропорционально населенности N2 уровня, соответствующего исходному состоянию системы (E2) и объемной спектральной плотности энергии внешнего (возбуждающего) излучения u12:
Энергия вынужденного излучения, испущенного в единичном объеме вещества за время dt,запишем в виде:
Из формулы (11) легко выделить величину
– вероятность перехода, совершаемого одной частицей за единицу времени и сопровождающегося вынужденным испусканием. Здесь Hа основе изложенных представлений установлены соотношения между коэффициентами Эйнштейна, для рассматриваемых переходов имеющие вид:
где Таким образом, внутренними параметрами атомной системы, определяющими энергию электромагнитного излучения, поглощённого или испущенного веществом, и, следовательно, – интенсивность спектральных линий в регистрируемом спектре, являются вероятности переходов в единицу времени, то есть коэффициенты Эйнштейна. При относительно невысоких значениях объемной плотности возбуждающего излучения Таким образом, существует только один тип элементарных процессов, который может быть использован для усиления оптического излучения, а именно: вынужденные переходы с излучением. В соответствии с выражением (13) вероятность таких переходов можно повысить, увеличивая спектральную плотность энергии "вынуждающего" излучения
Баланс энергии в единице объема вещества, за единицу времени излучаемой в результате вынужденных переходов и поглощаемой в результате вынужденных переходов с возбуждением атома, можно представить в виде:
Учитывая, что g1B12= g2B21, формулу (16) можно переписать в виде:
В естественных условиях в соответствии с распределением Максвелла-Больцмана всегда Чтобы среда усиливала падающее на нее излучение (ΔW > 0), необходимо, чтобы выполнялось условие Среда, находящаяся в неравновесном состоянии, при котором распределение населенностей хотя бы для двух уровней энергии инвертировано (обращено) по отношению к распределению Максвелла—Больцмана, называется инверсной. Такие среды обладают отрицательным коэффициентом поглощения α (см. (1) – закон Бугера), т.е. при прохождении сквозь них излучения его интенсивность увеличивается. Такие среды называют активными. Для усиления света в активной среде энергия, излучаемая в единицу времени, должна превышать суммарные потери энергии, обусловленные поглощением излучения в среде и полезными потерями, то есть выведением излучения из среды в направлении распространения излучения (например, полезные потери составляет энергия излучения лазера).
Воспользуйтесь поиском по сайту: ![]() ©2015 - 2025 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...
|