Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Газовые якоря. Песочные якоря. 19 билет эксплуатация скважин погружными центробежными электронасосами. 11.1. Общая схема установки погружного центробежного электронасоса




Газовые якоря. Песочные якоря

 

На наполнение насоса в известной мере можно влиять, изменяя коэффициент сепарации газа m на приеме насоса, который зависит от условий всасывания газожидкостной смеси. С помощью особых устройств и приспособлений, называемых газовыми якорями, удается увеличить долю газа, уходящего через межтрубное пространство, а следовательно, уменьшить долю газа, поступающего в цилиндр насоса.

Работа газовых якорей основана на различных принципах, например, таких как отделение газовых пузырьков за счет их всплытия в потоке жидкости, направленном вниз, использование принципа центрифугирования при завихрении потока, использование вибрации тарелок на пружинных подвесках и др.

В однокорпусном якоре (рис. 1) ГЖС заходит в кольцевое пространство между корпусом якоря 1 и центральной трубой 2, верхний конец которой присоединяется к приемному клапану насоса 4. Направление потока изменяется, газовые пузырьки всплывают и уходят в межтрубное пространство. Жидкость, обедненная газом, поступает в центральную трубку через отверстия 5 и далее в цилиндр насоса. Газовый пузырек 3 увлекается вниз нисходящим потоком жидкости, скорость которого зависит от дебита скважины и площади сечения кольцевого пространства между корпусом 1 и трубкой 2, так что

(1)

где Q - объемный секундный расход ГЖС в условиях приема насоса; F - f - площадь сечения между корпусом и центральной трубкой газового якоря.

Рис. 1. Принципиальная схема двухкорпусного газового якоря

 

Билет 19

19 билет эксплуатация скважин погружными центробежными электронасосами

11. 1. Общая схема установки погружного центробежного электронасоса

Центробежные насосы для откачки жидкости из скважины принципиально не отличаются от обычных центробежных насосов, используемых для перекачки жидкостей на поверхности земли. Однако малые радиальные размеры, обусловленные диаметром обсадных колонн, в которые спускаются центробежные насосы, практически неограниченные осевые размеры, необходимость преодоления высоких напоров и работа насоса в погруженном состоянии привели к созданию центробежных насосных агрегатов специфического конструктивного исполнения. Внешне они ничем не отличаются от трубы, но внутренняя полость такой трубы содержит большое число сложных деталей, требующих совершенной технологии изготовления.

Погружные центробежные электронасосы (ПЦЭН) - это многоступенчатые центробежные насосы с числом ступеней в одном блоке до 120, приводимые во вращение погружным электродвигателем специальной конструкции (ПЭД). Электродвигатель питается с поверхности электроэнергией, подводимой по кабелю от повышающего автотрансформатора или трансформатора через станцию управления, в которой сосредоточена вся контрольно-измерительная аппаратура и автоматика. ПЦЭН опускается в скважину под расчетный динамический уровень обычно на 150 - 300 м. Жидкость подается по НКТ, к внешней стороне которых прикреплен специальными поясками электрокабель. В насосном агрегате между самим насосом и электродвигателем имеется промежуточное звено, называемое протектором или гидрозащитой. Установка ПЦЭН (рис. 11. 1) включает маслозаполненный электродвигатель ПЭД 1; звено гидрозащиты или протектор 2; приемную сетку насоса для забора жидкости 3; многоступенчатый центробежный насос ПЦЭН 4; НКТ 5; бронированный трехжильный электрокабель 6; пояски для крепления кабеля к НКТ 7; устьевую арматуру 8; барабан для намотки кабеля при спуско-подъемных работах и хранения некоторого запаса кабеля 9; трансформатор или автотрансформатор 10; станцию управления с автоматикой 11 и компенсатор 12.

Насос, протектор и электродвигатель являются отдельными узлами, соединяемыми болтовыми шпильками. Концы валов

 

Рис. 11. 1. Общая схема оборудования скважины установкой погружного центробежного насоса

имеют шлицевые соединения, которые стыкуются при сборке всей установки. При необходимости подъема жидкости с больших глубин секции ПЦЭН соединяются друг с другом так, что общее число ступеней достигает 400. Всасываемая насосом жидкость последовательно проходит все ступени и покидает насос с напором, равным внешнему гидравлическому сопротивлению. УПЦЭН отличаются малой металлоемкостью, широким диапазоном рабочих характеристик, как по напору, так и по расходу, достаточно высоким к. п. д., возможностью откачки больших количеств жидкости и большим межремонтным периодом. Следует напомнить, что средняя по России подача по жидкости одной УПЦЭН составляет 114, 7 т/сут, а УШСН - 14, 1 т/сут.

Все насосы делятся на две основные группы; обычного и износостойкого исполнения. Подавляющая часть действующего фонда насосов (около 95 %) - обычного исполнения.

Насосы износостойкого исполнения предназначены для работы в скважинах, в продукции которых имеется небольшое количество песка и других механических примесей (до 1 % по массе). По поперечным размерам все насосы делятся на 3 условные группы: 5; 5А и 6, что означает номинальный диаметр обсадной колонны, (в дюймах), в которую может быть спущен данный насос.

Область применения УЭЦН — это высокодебитные обводненные, глубокие и наклонные скважины с дебитом 10 ¸ 1300 м3/сут и высотой подъема 500 ¸ 2000 м. Межремонтный период УЭЦН составляет до 320 суток и более.

Установки погружных центробежных насосов в модульном исполнении типов УЭЦНМ и УЭЦНМК предназначены для откачки продукции нефтяных скважин, содержащих нефть, воду, газ и механические примеси. Установки типа УЭЦНМ имеют обычное исполнение, а типа УЭЦНМК — коррозионностойкое.

Установка (рисунок 24) состоит из погружного насосного агрегата, кабельной линии, спускаемой в скважину на насосно-компрессорных трубах, и наземного электрооборудования (трансформаторной подстанции).

Погружной насосный агрегат включает в себя двигатель (электродвигатель с гидрозащитой) и насос, над которым устанавливают обратный и сливной клапаны.

В зависимости от максимального поперечного габарита погружного агрегата установки разделяют на три условные группы — 5; 5А и 6:

· установки группы 5 поперечным габаритом 112 мм применяют в скважинах с колонной обсадных труб внутренним диаметром не менее 121. 7 мм;

· установки группы 5А поперечным габаритом 124 мм — в скважинах внутренним диаметром не менее 130 мм;

· установки группы 6 поперечным габаритом 140. 5 мм — в скважинах внутренним диаметром не менее 148. 3 мм.

Условия применимости УЭЦН по перекачиваемым средам: жидкость с содержанием механических примесей не более 0. 5 г/л, свободного газа на приеме насоса не более 25 %; сероводорода не более 1. 25 г/л; воды не более 99 %; водородный показатель (рН) пластовой воды в пределах 6 ¸ 8. 5. Температура в зоне размещения электродвигателя не более + 90 ˚ С (специального теплостойкого исполнения до + 140 ˚ С).

Пример шифра установок — УЭЦНМК5-125-1300 означает: УЭЦНМК — установка электроцентробежного насоса модульного и коррозионно-стойкого исполнения; 5 — группа насоса; 125 — подача, м3/сут; 1300 — развиваемый напор, м вод. ст.

 

Рисунок 24 — Установка погружного центробежного насоса

1 — оборудование устья скважин; 2 — пункт подключательный выносной; 3 — трансформаторная комплексная подстанция; 4 — клапан спускной; 5 — клапан обратный; 6 — модуль-головка; 7 — кабель; 8 — модуль-секция; 9 — модуль насосный газосепараторный; 10 — модуль исходный; 11 — протектор; 12 — электродвигатель; 13 — система термоманометрическая.

 

На рисунке 24 представлена схема установки погружных центробежных насосов в модульном исполнении, представляющая новое поколение оборудования этого типа, что позволяет индивидуально подбирать оптимальную компоновку установки к скважинам в соответствии с их параметрами из небольшого числа взаимозаменяемых модулей. Установки (на рисунке 24 — схема НПО «Борец», г. Москва) обеспечивают оптимальный подбор насоса к скважине, что достигается наличием для каждой подачи большого количества напоров. Шаг напоров установок составляет от 50 ¸ 100 до 200 ¸ 250 м в зависимости от подачи в интервалах, указанных в таблице 6 основных данных установок.

Выпускаемые серийно УЭЦН имеют длину от 15. 5 до 39. 2 м и массу от 626 до 2541 кг в зависимости от числа модулей (секций) и их параметров.

В современных установках может быть включено от 2 до 4 модулей-секций. В корпус секции вставляется пакет ступеней, представляющий собой собранные на валу рабочие колеса и направляющие аппараты. Число ступеней колеблется в пределах 152 ¸ 393. Входной модуль представляет основание насоса с приемными отверстиями и фильтром-сеткой, через которые жидкость из скважины поступает в насос. В верхней части насоса ловильная головка с обратным клапаном, к которой крепятся НКТ.

Таблица 6

Наименование установок Минимальный (внутренний) диаметр эксп-луатационной колонны, мм Попереч-ный габарит установки, мм Подача м3/сут Напор, м Мощность двигателя, кВт Тип газосепаратора
УЭЦНМ5-50

121. 7

990 ¸ 1980 32 ¸ 45  
УЭЦНМ5-80

900 ¸ 1950

32 ¸ 63  
УЭЦНМК5-80    
УЭЦНМ5-125

745 ¸ 1770

  1МНГ5
УЭЦНМК5-125    
УЭЦНМ5-200 640 ¸ 1395 45 ¸ 90 1МНГК5
УЭЦНМ5А-160

130. 0

790¸ 1705 32¸ 90 МНГА5
УЭЦНМ5А-250

795¸ 1800

45¸ 90  
УЭЦНМК5-250   МНГК5А
УЭЦНМ5А-400

555 ¸ 1255

63 ¸ 125  
УЭЦНМК5А-400    
УЭЦНМ6-250

144. 3

920 ¸ 1840 63 ¸ 125  
УЭЦНМ6-320 755 ¸ 1545    
УЭЦНМ6-500 144. 3 или 148. 3 137 или 140. 5 800 ¸ 1425 90 ¸ 180  
УЭЦНМ6-800

148. 3

140. 5

725 ¸ 1100 125 ¸ 250  
УЭЦНМ6-1000 615 ¸ 1030 180 ¸ 250  

 

Насос (ЭЦНМ) — погружной центробежный модульный многоступенчатый вертикального исполнения.

Насосы также подразделяют на три условные группы — 5; 5А и 6. Диаметры корпусов группы 5 ¸ 92 мм, группы 5А — 103 мм, группы 6 — 114 мм.

Модуль-секция насоса (рисунок 25) состоит из корпуса 1, вала 2, пакетов ступеней (рабочих колес — 3 и направляющих аппаратов — 4), верхнего подшипника 5, нижнего подшипника 6, верхней осевой опоры 7, головки 8, основания 9, двух ребер 10 (служат для защиты кабеля от механических повреждений) и резиновых колец 11, 12, 13.

Рабочие колеса свободно передвигаются по валу в осевом направлении и ограничены в перемещении нижним, и верхним направляющими аппаратами. Осевое усилие от рабочего колеса передается на нижнее текстолитовое кольцо и затем на бурт направляющего аппарата. Частично осевое усилие передается валу вследствие трения колеса о вал или прихвата колеса к валу при отложении солей в зазоре или коррозии металлов. Крутящий момент передается от вала к колесам латунной (Л62) шпонкой, входящей в паз рабочего колеса. Шпонка расположена по всей длине сборки колес и состоит из отрезков длиною 400 - 1000 мм.

 

Рисунок 25 — Модуль‑ секция насос

1 — корпус; 2 — вал; 3 — колесо рабочее; 4 — аппарат направляющий; 5 — подшипник верхний; 6 — подшипник нижний; 7 — опора осевая верхняя; 8 — головка; 9 — основание; 10 — ребро; 11, 12, 13 — кольца резиновые.

 

Направляющие аппараты сочленяются между собой по периферийным частям, в нижней части корпуса они все опираются на нижний подшипник 6 (рисунок 25) и основание 9, а сверху через корпус верхнего подшипника зажаты в корпусе.

Рабочие колеса и направляющие аппараты насосов обычного исполнения изготавливаются из модифицированного серого чугуна и радиационно модифицированного полиамида, насосов коррозионно-стойкого исполнения — из модифицированного чугуна ЦН16Д71ХШ типа «нирезист».

Валы модулей секций и входных модулей для насосов обычного исполнения изготавливаются из комбинированной коррозионно-стойкой высокопрочной стали ОЗХ14Н7В и имеют на торце маркировку «НЖ» для насосов повышенной коррозионной стойкости — из калиброванных прутков из сплава Н65Д29ЮТ-ИШ-К-монель и имеют на торцах маркировку «М».

Валы модулей-секций всех групп насосов, имеющих одинаковые длины корпусов 3, 4 и 5 м, унифицированы.

Соединение валов модулей-секций между собой, модуля секции с валом входного модуля (или вала газосепаратора), вала входного модуля свалом гидрозащиты двигателя осуществляется при помощи шлицевых муфт.

Соединение модулей между собой и входного модуля с двигателем — фланцевое. Уплотнение соединений (кроме соединения входного модуля с двигателем и входного модуля с газосепаратором) осуществляется резиновыми кольцами.

Для откачивания пластовой жидкости, содержащей у сетки входного модуля насоса свыше 25 % (до 55 %) по объему свободного газа, к насосу подсоединяется модуль насосный — газосепаратор (рисунок 26).

 

Рисунок 26 — Газосепаратор

1 — головка; 2 — переводник; 3 — сепаратор; 4 — корпус; 5 — вал; 6 — решетка; 7 — направляющий аппарат; 8 — рабочее колесо; 9 — шнек; 10 — подшипник; 11 — основание.

 

Газосепаратор устанавливается между входным модулем и модулем-секцией. Наиболее эффективны газосепараторы центробежного типа, в которых фазы разделяются в поле центробежных сил. При этом жидкость концентрируется в периферийной части, а газ — в центральной части газосепаратора и выбрасывается в затрубное пространство. Газосепараторы серии МНГ имеют предельную подачу 250 ¸ 500 м3/сут., коэффициент сепарации 90 %, массу от 26 до 42 кг.

Двигатель погружного насосного агрегата состоит из электродвигателя и гидрозащиты. Электродвигатели (рисунок 27) погружные трехфазные коротко замкнутые двухполюсные маслонаполненные обычного и коррозионно-стойкого исполнения унифицированной серии ПЭДУ и в обычном исполнении серии ПЭД модернизации Л. Гидростатическое давление в зоне работы не более 20 МПа. Номинальная мощность от 16 до 360 кВт, номинальное напряжение 530 ¸ 2300 В, номинальный ток 26 ¸ 122. 5 А.

 

Рисунок 27 — Электродвигатель серии ПЭДУ

1 — соединительная муфта; 2 — крышка; 3 — головка; 4 — пятка; 5 — подпятник; 6 — крышка кабельного ввода; 7 — пробка; 8 — колодка кабельного ввода; 9 — ротор; 10 — статор; 11 — фильтр; 12 — основание.

 

Гидрозащита (рисунок 28) двигателей ПЭД предназначена для предотвращения проникновения пластовой жидкости во внутреннюю полость электродвигателя, компенсации изменения объема масла во внутренней полости от температуры электродвигателя и передачи крутящего момента от вала электродвигателя к валу насоса.

 

Рисунок 28 — Гидрозащита

а — открытого типа; б — закрытого типа

А — верхняя камера; Б — нижняя камера; 1 — головка; 2 — торцевое уплотнение; 3 — верхний ниппель; 4 — корпус; 5 — средний ниппель; 6 — вал; 7 — нижний ниппель; 8 — основание; 9 — соединительная трубка; 10 — диафрагма.

 

Гидрозащита состоит либо из одного протектора, либо из протектора и компенсатора. Могут быть три варианта исполнения гидрозащиты.

Первый состоит из протекторов П92, ПК92 и П114 (открытого типа) из двух камер. Верхняя камера заполнена тяжелой барьерной жидкостью (плотность до 2 г/см3, не смешиваемая с пластовой жидкостью и маслом), нижняя — маслом МА‑ ПЭД, что и полость электродвигателя. Камеры сообщены трубкой. Изменения объемов жидкого диэлектрика в двигателе компенсируются за счет переноса барьерной жидкости в гидрозащите из одной камеры в другую.

Второй состоит из протекторов П92Д, ПК92Д и П114Д (закрытого типа), в которых применяются резиновые диафрагмы, их эластичность компенсирует изменение объема жидкого диэлектрика в двигателе.

Третий — гидрозащита 1Г51М и 1Г62 состоит из протектора, размещенного над электродвигателем и компенсатора, присоединяемого к нижней части электродвигателя. Система торцевых уплотнений обеспечивает защиту от попадания пластовой жидкости по валу внутрь электродвигателя. Передаваемая мощность гидрозащит 125 ¸ 250 кВт, масса 53 ¸ 59 кг.

Система термоманометрическая ТМС-3 предназначена для автоматического контроля за работой погружного центробежного насоса и его защиты от аномальных режимов работы (при пониженном давлении на приеме насоса и повышенной температуре погружного электродвигателя) в процессе эксплуатации скважин. Имеется подземная и наземная части. Диапазон контролируемого давления от 0 до 20 МПа. Диапазон рабочих температур от 25 до 105 ˚ С.

Масса общая 10. 2 кг (см. рисунок 24).

Кабельная линия представляет собой кабель в сборе, намотанный на кабельный барабан.

Кабель в сборе состоит из основного кабеля — круглого ПКБК (кабель, полиэтиленовая изоляция, бронированный, круглый) или плоского — КПБП (рисунок 29), присоединенного к нему плоского кабеля с муфтой кабельного ввода (удлинитель с муфтой).

 

Рисунок 29 — Кабели

а — круглый; б — плоский; 1 — жила; 2 — изоляция; 3 — оболочка; 4 — подушка; 5 — броня.

 

Кабель состоит из трех жил, каждая из которых имеет слой изоляции и оболочку; подушки из прорезиненной ткани и брони. Три изолированные жилы круглого кабеля скручены по винтовой линии, а жилы плоского кабеля — уложены параллельно в один ряд.

Кабель КФСБ с фторопластовой изоляцией предназначен для эксплуатации при температуре окружающей среды до + 160 ˚ С.

Кабель в сборе имеет унифицированную муфту кабельного ввода К38 (К46) круглого типа. В металлическом корпусе муфты герметично заделаны изолированные жилы плоского кабеля с помощью резинового уплотнителя.

К токопроводящим жилам прикреплены штепсельные наконечники.

Круглый кабель имеет диаметр от 25 до 44 мм. Размер плоского кабеля от 10. 1х25. 7 до 19. 7х52. 3 мм. Номинальная строительная длина 850, 1000 ¸ 1800 м.

Комплектные устройства типа ШГС5805 обеспечивают включение и выключение погружных двигателей, дистанционное управление с диспетчерского пункта и программное управление, работу в ручном и автоматическом режимах, отключение при перегрузке и отклонении напряжения питающей сети выше 10 % или ниже 15 % от номинального, контроль тока и напряжения, а также наружную световую сигнализацию об аварийном отключении (в том числе со встроенной термометрической системой).

Комплексная трансформаторная подстанция погружных насосов — КТППН предназначена для питания электроэнергией и защиты электродвигателей погружных насосов из одиночных скважин мощностью 16 ¸ 125 кВт включительно. Номинальное высокое напряжение 6 или 10 кВ, пределы регулирования среднего напряжения от 1208 до 444 В (трансформатор ТМПН100) и от 2406 до 1652 В (ТМПН160). Масса с трансформатором 2705 кг.

Комплектная трансформаторная подстанция КТППНКС предназначена для электроснабжения, управления и защиты четырех центробежных электронасосов с электродвигателями 16 ¸ 125 кВт для добычи нефти в кустах скважин, питания до четырех электродвигателей станков-качалок и передвижных токоприемников при выполнении ремонтных работ. КТППНКС рассчитана на применение в условиях Крайнего Севера и Западной Сибири.

В комплект поставки установки входят: насос, кабель в сборе, двигатель, трансформатор, комплектная трансформаторная подстанция, комплектное устройство, газосепаратор и комплект инструмента.

 

 5. Влияние газа

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...