Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Системы рассуждений на основе аналогичных случаев




Идея систем case based reasoning — CBR — на первый взгляд крайне проста. Для того чтобы сделать прогноз на будущее или выбрать правильное решение, эти системы находят в прошлом близкие аналоги наличной ситуации и выбирают тот же ответ, который был для них правильным. Поэтому этот метод еще называют методом "ближайшего соседа" (nearest neighbour). В последнее время распространение получил также термин memory based reasoning, который акцентирует внимание, что решение принимается на основании всей информации, накопленной в памяти.

Системы CBR показывают неплохие результаты в самых разнообразных задачах. Главным их минусом считают то, что они вообще не создают каких-либо моделей или правил, обобщающих предыдущий опыт, — в выборе решения они основываются на всем массиве доступных исторических данных, поэтому невозможно сказать, на основе каких конкретно факторов CBR системы строят свои ответы.

Другой минус заключается в произволе, который допускают системы CBR при выборе меры "близости". От этой меры самым решительным образом зависит объем множества прецедентов, которые нужно хранить в памяти для достижения удовлетворительной классификации или прогноза [7].

Примеры систем, использующих CBR, — KATE tools (Acknosoft, Франция), Pattern Recognition Workbench (Unica, США).

Деревья решений (decision trees)

Деревья решения являются одним из наиболее популярных подходов к решению задач Data Mining. Они создают иерархическую структуру классифицирующих правил типа "ЕСЛИ... ТО..." (if-then), имеющую вид дерева. Для принятия решения, к какому классу отнести некоторый объект или ситуацию, требуется ответить на вопросы, стоящие в узлах этого дерева, начиная с его корня. Вопросы имеют вид "значение параметра A больше x?". Если ответ положительный, осуществляется переход к правому узлу следующего уровня, если отрицательный — то к левому узлу; затем снова следует вопрос, связанный с соответствующим узлом.

 

Рисунок 6. Система KnowledgeSeeker обрабатывает банковскую информацию

Популярность подхода связана как бы с наглядностью и понятностью. Но деревья решений принципиально не способны находить “лучшие” (наиболее полные и точные) правила в данных. Они реализуют наивный принцип последовательного просмотра признаков и “цепляют” фактически осколки настоящих закономерностей, создавая лишь иллюзию логического вывода.

Вместе с тем, большинство систем используют именно этот метод. Самыми известными являются See5/С5.0 (RuleQuest, Австралия), Clementine (Integral Solutions, Великобритания), SIPINA (University of Lyon, Франция), IDIS (Information Discovery, США), KnowledgeSeeker (ANGOSS, Канада). Стоимость этих систем варьируется от 1 до 10 тыс. долл.

Эволюционное программирование

Проиллюстрируем современное состояние данного подхода на примере системы PolyAnalyst — отечественной разработке, получившей сегодня общее признание на рынке Data Mining. В данной системе гипотезы о виде зависимости целевой переменной от других переменных формулируются в виде программ на некотором внутреннем языке программирования. Процесс построения программ строится как эволюция в мире программ (этим подход немного похож на генетические алгоритмы). Когда система находит программу, более или менее удовлетворительно выражающую искомую зависимость, она начинает вноситьв нее небольшие модификации и отбирает среди построенных дочерних программ те, которые повышают точность. Таким образом система "выращивает" несколько генетических линий программ, которые конкурируют между собой в точности выражения искомой зависимости. Специальный модуль системы PolyAnalyst переводит найденные зависимости с внутреннего языка системы на понятный пользователю язык (математические формулы, таблицы и пр.).

Другое направление эволюционного программирования связано с поиском зависимости целевых переменных от остальных в форме функций какого-то определенного вида. Например, в одном из наиболее удачных алгоритмов этого типа — методе группового учета аргументов (МГУА) зависимость ищут в форме полиномов. В настоящее время из продающихся в России систем МГУА реализован в системе NeuroShell компании Ward Systems Group.

Стоимость систем до $ 5000.





Рекомендуемые страницы:

Воспользуйтесь поиском по сайту:



©2015- 2021 megalektsii.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.