Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Характеристики КМОП микросхем с полевыми транзисторами




КМОП(комплементарная структура металл-оксид-полупроводник)— технология построения электронных схем. В более общем случае — КМДП (со структурой металл-диэлектрик-полупроводник). Отличительной особенностью схем КМОП по сравнению с биполярными технологиями (ТТЛ, ЭСЛ и др.) является очень малое энергопотребление в статическом режиме (в большинстве случаев можно считать, что энергия потребляется только во время переключения состояний )

Подавляющее большинство современных логических микросхем, в том числе процессоров, используют схемотехнику КМОП. В технологии КМОП используются полевые транзисторы с изолированным затвором с каналами разной проводимости.

В устройствах на микросхемах КМОП вполне применимы меры по борьбе с дребезгом, известные из опыта работы с микросхемами ТТЛ, например, включение статического триггера на двух элементах И-НЕ или ИЛИ-НЕ. Однако чрезвычайно высокое входное сопротивление микросхем КМОП (порядка сотен и тысяч мегаом) и относительно высокое выходное сопротивление (сотни ом - один килоом) позволяет упростить цепи подавления дребезга, исключив резисторы. Вариантом схемы является устройство, собранное всего лишь на одном неинвертирующем логическом элементе.

Здесь следует сказать несколько слов о неинвертирующих логических элементах серий КМОП. Большинство логических элементов этих серий являются инвертирующими. Как указывалось выше, микросхемы, содержащие в своем обозначении буквы «ПУ», служат для согласования микросхем КМОП с микросхемами ТТЛ. По этой причине их выходные токи при подаче на их выходы напряжения питания или соединении выходов с общим проводом в устройстве по схемам могут достигать многих десятков миллиампер, что отрицательно сказывается на надежности устройств и может служить мощным источником помех. Большое входное сопротивление микросхем КМОП позволяет в некоторых случаях обойтись вообще без активных элементов для подавления дребезга.

Наиболее перспективны серии, выполненные на комплементарных МОП-транзисторах (КМОП) (К176, К564 и др.). В них отсутствуют нагрузочные резисторы, а МОП-транзисторы с разной электропроводностью каналов выполняют роль ключей. При напряжении на затворах, большем порогового, для транзисторов с каналом определенного типа соответствующий транзистор отперт, а другой заперт. При другом значении большем порогового для транзисторов с электропроводностью противоположного типа отпертый и запертый транзисторы меняются местами. Такие структуры успешно работают при изменении в широких пределах напряжения источника питания (от 3 до 15 В), что недостижимо для логических элементов, в состав которых входят резисторы. В статическом режиме при большом сопротивлении нагрузки логические элементы КМОП практически не потребляют мощности.

Для них также характерны: стабильность уровней входного сигнала и малое его отличие от напряжений источника питания; высокое входное и небольшое выходное сопротивления; хорошая помехоустойчивость; легкость согласования с микросхемами других серий.

Логические элементы КМОП, выполняющие функцию 3 И-НЕ. В нем использованы транзисторы с индуцированным каналом. Транзисторы VT1—VT3 имеют канал -типа и открыты при напряжении затворов, близких к нулю. Транзисторы имеют канал -типа и открыты при напряжениях затворов, больших порогового значения.

При нулевом входном сигнале хотя бы на одном из входов логического элемента один из транзисторов открыт и выходное напряжение равное Е. И только в том случае, если на всех входах есть сигнал логической единицы (обычно равный Е), все транзисторы VT1 — закрыты, а ярусно включенные транзисторы открыты. Выходное напряжение равно потенциалу общей шины (логический 0). Таким образом, сочетание ярусного включения транзисторов с каналами, имеющими один тип электропроводности, и параллельного соединения транзисторов с каналами другого типа электропроводности позволили реализовать функцию И-НЕ.

Если группы ярусно и параллельно включенных транзисторов поменять местами, то будет реализован элемент, выполняющий функцию. Он работает аналогично предыдущему. Транзисторы открыты в том случае, если на их затворах логическая 1, и заперты при входных сигналах логического 0.

Из рассмотренных схем видно, что в статическом режиме один из транзисторов, включенных последовательно, всегда закрыт, а другой открыт. Так как закрытый транзистор имеет большое сопротивление, то ток в цепи определяется только малыми значениями токов утечек и микросхема практически не потребляет электрическую мощность.

В качестве базового инвертора, устанавливаемого на входе ЛЭ, обычно используется цепь. Для предотвращения пробоя пленки оксида под затворами МОП-транзисторов схему инвертора обычно дополняют диодами, выполняющими защитные функции. Постоянная времени этих компонентов около 10 не. Поэтому их введение существенно не меняет динамические характеристики логических элементов. При попадании в цепь входа статических напряжений той или иной полярности соответствующие диоды открываются и закорачивают на цепь источника питания источник статического заряда. Резистор, который вместе с барьерными емкостями диодов образует интегрирующую цепь, уменьшает скорость увеличения напряжения на затворе до значения, при котором диоды VD2, VD3 успевают открыться.

Если источник напряжения имеет малое внутреннее сопротивление, то через диод при потечет большой прямой ток. Поэтому при включении аппаратуры с подобными логическими элементами напряжение питания должно подаваться раньше входного сигнала, а при выключении — наоборот. В тех случаях, когда допустимо некоторое снижение быстродействия, в цепь входа можно включать резисторы, ограничивающие входной ток на уровне.

В ряде микросхем для увеличения крутизны передаточной функции и повышения нагрузочной способности к выходу инвертора логического элемента подключают один или два дополнительных инвертора. Транзисторы дополнительного инвертора имеют повышенную мощность. За счет них обеспечивается уменьшение сопротивлений каналов открытых выходных транзисторов инвертора с кОм до кОм. Эти значения выходных сопротивлений позволяют не вводить в выходные цепи токоограничивающие резисторы, защищающие от короткого замыкания на выходе.

В логических элементах КМОП предельно просто реализуют элементы с тремя устойчивыми состояниями. Для этого последовательно с транзисторами инвертора включают два комплементарных транзистора,управляемых инверсными сигналами. Если при подаче сигналов транзисторы закрыты, то выходное сопротивление инвертора имеет большое значение (инвертор находится в третьем высокоимпедансном состоянии).

Третье состояние имеется у отдельных микросхем, например у логических элементов типа, а также у сложных функциональных узлов серий КМОП.

Согласование логических элементов ТТЛ с логическими элементами КМОП можно выполнить несколькими способами:

1) питать логические элементы КМОП малыми напряжениями, при которых сигналы логических элементов ТТЛ переключают транзисторы логических элементов КМОП;

2) использовать логические элементы ТТЛ с открытым коллектором, в цепь выхода которых включен резистор, подключенный к дополнительному источнику напряжения;

3) применять микросхемы преобразователей уровня при согласовании серий КМОП с сериями ТТЛ и при согласовании серий ТТЛ с сериями КМОП).

При необходимости увеличить выходную мощность допускается параллельное соединение нескольких микросхем. Для подавления помех по цепи питания между шинами питания включают электролитический конденсатор емкостью и параллельно ему керамические конденсаторы емкостью на корпус. Последние подключают непосредственно к выходам микросхем. Емкость нагрузки, как правило, не должна превышать. При большем значении емкости нагрузки последовательно с выходом устанавливают дополнительный резистор, ограничивающий ток ее переразрядки. При наличии выбросов напряжения во входном сигнале последовательно с входом ЛЭ можно включить ограничительный резистор номиналом до 10 кОм. Неиспользованные входы ЛЭ следует обязательно подключать к шинам источника питания или соединять параллельно с подключенными входами. В противном случае возможны пробои диэлектрика под затвором и нарушение работоспособности вследствие сильного влияния помех.

Допускается кратковременное замыкание накоротко выходных зажимов микросхем при малом напряжении питания.

При хранении и монтаже следует опасаться статического электричества. Поэтому при хранении выводы электрически замыкают между собой. Монтаж их проводится при выключенном напряжении питания, причем обязательно использование браслетов, с помощью которых тело электромонтажников соединяется с землей.

1.4

Логические элементы КМОП-серий широко применяются при построении экономичных цифровых устройств малого и среднего быстродействия. В дальнейшем по мере усовершенствования технологии их изготовления они могут составить конкуренцию для логических элементов ТТЛ при создании быстродействующих устройств.

Обычно при конструировании пробников и калибраторов используют генераторы коротких импульсов, вырабатывающие сигнал с широким и равномерным спектром. Такой сигнал позволяет быстро проверять каскады радиоаппаратуры, как низкочастотные (НЧ), так и высокочастотные (ВЧ). Причем чем меньше длительность импульсов, тем лучше - спектр получается шире и равномернее.

Как правило, подобные генераторы состоят из двух основных узлов: собственно генератор прямоугольных импульсов и формирователь коротких импульсов. Между тем можно обойтись без специального формирователя, поскольку он уже имеется в логическом элементе микросхемы структуры КМОП.

Рассмотрим схему

Рисунок 4- RC- генератор

На рисунке 4 показан известный RC-генератор, работающий в данном случае на частоте около 1000 Гц (она зависит от номиналов деталей R1, С1). Низкочастотный сигнал прямоугольной формы поступает с выхода элемента DD1.2 (вывод 4) через цепочку R2C3 на переменный резистор R4 - им плавно регулируют амплитуду сигнала, подаваемого на проверяемый узел.

Выход же высокочастотного сигнала (коротких импульсов) выполнен несколько необычно - сигнал снимают с переменного резистора R3, включенного в цепь питания микросхемы. Перемещением движка этого резистора плавно регулируют уровень выходного высокочастотного сигнала.

Рассмотрим принцип работы такого формирователя по упрощенной схеме логического элемента структуры КМОП, показанного на рисунке 5.

Рисунок 5-упрощенная схема логического элемента структуры КМОП

Его основа - два последовательно включенных полевых транзистора с изолированным затвором и разным типом проводимости каналов. Если последовательно с транзисторами включить резистор R1, а на вход элемента подавать прямоугольные импульсы U1, произойдет следующее (рис. 3). Из-за того, что длительность фронта импульса не может быть бесконечно малой, а также из-за инерционности транзисторов, в момент действия фронта наступит такой момент, когда оба транзистора окажутся в открытом состоянии. Через них потечет так называемый сквозной ток, значение которого может составлять от единиц до десятков миллиампер в зависимости от типа микросхемы и напряжения источника питания. На резисторе будут формироваться короткие импульсы напряжения U2. Причем как в момент действия фронта, так и спада.

Иначе говоря, произойдет удвоение частоты исходных импульсов.

Сопротивление резистора не должно быть большим во избежание нарушения режима работы элементов микросхемы. Это означает, что к высокочастотному выходу можно подключать низкоомную нагрузку сопротивлением 50...75 Ом.

У рассмотренного генератора максимальная амплитуда импульсов на высокочастотном выходе составляет 100...150мВ, а потребляемый от источника питания ток не превышает 1,6 мА. Генератор рассчитан на использование при проверке усилителей ЗЧ, трехпрограммных громкоговорителей, радиоприемников на диапазонах ДВ и СВ.

1.5

 

структуры КМОП

 

 

Полевой транзистор — полупроводниковый прибор, через который протекает поток основных носителей зарядов, регулируемый поперечным электрическим полем, которое создаётся напряжением, приложенным между затвором и стоком или между затвором и истоком.

Так как принцип действия полевых транзисторов основан на перемещении основных носителей заряда одного типа (электронами или дырками), такие приборы ещё называют униполярными, тем самым противопоставляя их биполярным.

Полевые транзисторы классифицируют на приборы с управляющим p-n-переходом и с изолированным затвором, так называемые МДП («металл-диэлектрик-полупроводник»)-транзисторы, которые также называют МОП («металл-оксид-полупроводник»)-транзисторами, причём последние подразделяют на транзисторы со встроенным каналом и приборы с индуцированным каналом.

К основным параметрам полевых транзисторов причисляют: входное сопротивление, внутреннее сопротивление транзистора, также называемое выходным, крутизну стокозатворной характеристики, напряжение отсечки и некоторые другие.

Полевой транзистор с управляющим p-n-переходом — это полевой транзистор, в котором пластина из полупроводника, например n-типа, имеет на противоположных концах электроды (сток и исток), с помощью которых она включена в управляемую цепь. Управляющая цепь подключается к третьему электроду (затвору) и образуется областью с другим типом проводимости, в данном случае p-типом.

Источник питания, включенный во входную цепь, создаёт на единственном p-n-переходе обратное напряжение. Во входную цепь также включается и источник усиливаемых колебаний. При изменении входного напряжения изменяется обратное напряжение на p-n-переходе, в связи с чем меняется толщина обедненного слоя (n-канал), то есть площадь поперечного сечения области, через которую проходит поток основных носителей заряда. Эта область называется каналом.

Отличительной особенностью структуры КМОП по сравнению с другими МОП-структурами (N-МОП, P-МОП) является наличие как n-, так и p-канальных полевых транзисторов; как следствие, КМОП-схемы обладают более высокой скоростью действия и меньшим энергопотреблением, однако при этом характеризуются более сложным технологическим процессом изготовления и меньшей плотностью упаковки.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...