Главная | Обратная связь | Поможем написать вашу работу!
МегаЛекции

Расчет горизонтального коллектора теплового насоса




Съем тепла с каждого метра трубы зависит от многих параметров: глубины укладки, наличия грунтовых вод, качества грунта и т.д. Ориентировочно можно считать, что для горизонтальных коллекторов он составляет 20 Вт.м.п. Более точно: сухой песок – 10, сухая глина – 20, влажная глина – 25, глина с большим содержанием воды – 35 Вт.м.п. Разницу температуры теплоносителя в прямой и обратной линии петли при расчетах, принимают обычно 3 °С. На участке коллектора, не следует возводить строений, чтобы тепло земли, т.е. наш источник энергии, пополнялся энергией за счет солнечной радиации.

Минимальное расстояние между проложенными трубами должно быть не менее 0,7–0,8 м. Длина одной траншеи может колебаться от 30 до 150 м., важно чтобы длины подключаемых контуров были примерно одинаковыми. В качестве теплоносителя первичного контура рекомендуется использовать раствор этиленгликоля (медиум) с точкой замерзания примерно -13 °C. В расчетах следует учесть, что теплоемкость раствора при температуре 0°С составляет 3,7 кДж/(кг·К), а плотность – 1,05 г/см3. При использовании медиума, потеря давления в трубах в 1,5 раза больше, чем при циркуляции воды. Для расчета параметров первичного контура теплонасосной установки потребуется определить расход медиума:

Vs = Qo·3600 / (1,05·3,7·.t),

где.t – разность температур между подающей и возвратной линиями, которую часто принимают равной 3 оК. Тогда Qo – тепловая мощность, получаемая от низкопотенциального источника (грунт). Последняя величина рассчитывается как разница полной мощности теплового насоса Qwp и электрической мощности, затрачиваемой на нагрев хладагента P:

Qo = Qwp – P, кВт.

Суммарная длина труб коллектора L и общая площадь участка под него A рассчитываются по формулам:

L = Qo/q,

A = L·da.

Здесь q – удельный (с 1 м трубы) теплосъем; da – расстояние между трубами (шаг укладки).

Пример расчета. Теплового Насоса.

Исходные условия: теплопотребность коттеджа площадью 120–240 м2 (из расчета тепловых потерь с учетом инфильтрации) – 13 кВт; температура воды в системе отопления принимаем равной 35 °С (подполовой обогрев); минимальная температура теплоносителя на выход в испаритель – 0 °С. Для обогрева здания выбран тепловой насос мощностью 14,5 кВт из существующего технического ряда оборудования, с учетом потерь на вязкости медиума, при отборе и передаче тепловой энергии из грунта, составляет 3,22 кВт. Теплосъем с поверхностного слоя грунта (сухая глина), q равняется 20 Вт/м.п. В соответствии с формулами рассчитываем:

1) требуемая тепловая мощность коллектора Qo = 14,5 – 3,22 = 11,28 кВт;

2) суммарную длину труб L = Qo/q = 11,28/0,020 = 564 м.п. Для организации такого коллектора потребуется 6 контуров длиной по 100 м;

3) при шаге укладки 0,75 м необходимая площадь участка А = 600 х 0,75 = 450 м2;

4) общая заправка этиленгликолевого раствора Vs = 11,28·3600/ (1,05·3,7·3) = 3,51 м3, в один контур равен 0,58 м3.

Для устройства коллектора выбираем пластиковую трубу типоразмера 32х3. Потери давления в ней составят 45 Па/м.п.; сопротивление одного контура – примерно 7 кПа; скорость протока теплоносителя – 0,3 м/с.

Расчет зонда

При использовании вертикальных скважин глубиной от 20 до 100 м в них погружаются U-образные пластиковые (при диаметрах от 32 мм) трубы. Как правило, в одну скважину вставляется две петли, с заливкой суспенсным раствором. В среднем удельный теплосъем такого зонда можно принять равным 50 Вт/м.п. Можно также ориентироваться на следующие данные по теплосъему:

- сухие осадочные породы – 20 Вт/м;
- каменистая почва и насыщенные водой осадочные породы – 50 Вт/м;
- каменные породы с высокой теплопроводностью – 70 Вт/м;
- подземные воды – 80 Вт/м.

Температура грунта на глубине более 15 м постоянна и составляет примерно +9 °С. Расстояние между скважинами должно быть более 5 м. При наличии подземных течений, скважины должны располагаться на линии, перпендикулярной потоку.

Подбор диаметров труб проводится исходя из потерь давления для требуемого расхода теплоносителя. Расчет расхода жидкости может проводиться для t = 5 °С.

Пример расчета.

Исходные данные – те же, что и в приведенном выше расчете горизонтального коллектора. При удельном теплосъеме зонда 50 Вт/м и требуемой мощности 11,28 кВт длина зонда L должна составить 225 м.

Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В каждой из них размещаем по две петли трубы типоразмера 32х3; всего – 6 контуров по 150 м.

Общий расход теплоносителя при.t = 5 °С составит 2,1 м3/ч; расход через один контур – 0,35 м3/ч. Контуры будут иметь следующие гидравлические характеристики: потери давления в трубе – 96 Па/м (теплоноситель – 25-процентный раствора этиленгликоля); сопротивление контура – 14,4 кПа; скорость потока – 0,3 м/с.

Выбор оборудования

Поскольку температура антифриза может изменяться (от –5 до +20 °С) в первичном контуре теплонасосной установки необходим гидравлический расширительный бак.

Рекомендуется также установить на отопительной (конденсаторной) линии теплового насоса накопительный бак: компрессор теплового насоса работает в режиме «включено-выключено». Слишком частые пуски могут привести к ускоренному износу его деталей. Бак полезен и как аккумулятор энергии – на случай отключения электроэнергии. Его минимальный объем принимается из расчета 20-30 л на 1 кВт мощности теплового насоса.

При использовании биваленции, второго источника энергии (электрического, газового, жидко- или твердотопливного котла), он подключается к схеме через аккумуляторный бак, являющимся еще и термогидрораспределителем, включение котла управляется тепловым насосом или верхним уровнем системой автоматики.

В случае возможных отключений электроэнергии можно увеличить мощность устанавливаемого теплового насоса на коэффициент, рассчитываемый по формуле: f = 24/(24 – t откл), где t откл – продолжительность перерыва в электроснабжении.

В случае возможного отключения электроэнергии на 4 ч этот коэффициент будет равен 1,2.

Мощность теплового насоса можно подбирать исходя из моновалентного или бивалентного режима его работы. В первом случае предполагается, что тепловой насос используется как единственный генератор тепловой энергии.

Следует принимать во внимание: даже в нашей стране продолжительность периодов с низкой температурой воздуха составляет небольшую часть отопительного сезона. Например, для Центрального региона России время, когда температура опускается ниже –10 °С, составляет всего 900 ч (38 сут), в то время, как продолжительность самого сезона – 5112 ч, а средняя температура января составляет примерно –10 °С. Поэтому наиболее целесообразным является работа теплового насоса в бивалентном режиме, предусматривающая включение дополнительного источника в периоды, когда температура воздуха опускается ниже определенной: –5 °С – в южных регионах России, –10 °С – в центральных. Это позволяет снизить стоимость теплового насоса и, особенно, работ по монтажу первичного контура (прокладка траншей, бурение скважин и т.п.), которая сильно увеличивается при возрастании мощности установки.

В условиях Центрального региона России для примерной оценки при подборе теплового насоса, работающего в бивалентном режиме, можно ориентироваться на соотношение 70/30: 70 % потребности в тепле покрывают тепловым насосом, а оставшиеся 30 – электрическим или другим источником тепловой энергии. В южных регионах можно руководствоваться соотношением мощности теплового насоса и дополнительного источника тепла, часто используемым в Западной Европе: 50 на 50.

Для коттеджа площадью 200 м2 на 4 человек при тепловых потерях 70 Вт/м2 (при расчете на –28 °С наружной температуры воздуха) потребность в тепле будет 14 кВт. К этой величине следует добавить 700 Вт на приготовление санитарной горячей воды. В результате необходимая мощность теплового насоса составит 14,7 кВт.

При возможности временного отключения электричества нужно увеличить это число на соответствующий коэффициент. Допустим, время ежедневного отключения – 4 ч, тогда мощность теплового насоса должна быть 17,6 кВт (повышающий коэффициент – 1,2). В случае моновалентного режима можно выбрать тепловой насос типа «грунт–вода» мощностью 17,1 кВт, потребляющий 6,0 кВт электроэнергии.

Для бивалентной системы с дополнительным электрическим нагревателем и температурой подачи холодной воды 10 °С для необходимости получения горячей воды и коэффициента запаса, мощность теплового насоса должна быть 11,4 Вт, а электрического котла – 6,2 кВт (в сумме – 17,6). Потребляемая системой пиковая электрическая мощность составит 9,7 кВт.

Примерная стоимость потребляемого за сезон электричества, при работе теплового насоса в моновалентном режиме составит 500 руб., а в бивалентном при температуре ниже (-10°С) – 12 500. Стоимость энергоносителя при использовании только соответствующего котла составит: электричества – 42 000, дизельного топлива – 25 000, а газа – около 8000 руб. (при наличии подведенной трубы и существующих в России низких ценах на газ). В настоящее время для наших условий по экономичности работы, тепловой насос может быть сравним только с газовым котлом новых серий, а по эксплуатационным затратам, долговечности, безопасности (не требуется помещение котельной) и экологической чистоте превосходит все другие виды производства тепловой энергии.

Отметим, что при установке тепловых насосов в первую очередь следует позаботиться об утеплении здания и установке стеклопакетов с низкой теплопроводностью, что снизить тепловые потери здания, а значит и стоимость работ и оборудования.

 

Приложение 7

Мировой уровень использования низкопотенциальной тепловой энергии земли посредством тепловых насосов
Страна Установленная мощность оборудования, МВт Произведенная энергия, ТДж/год
Австралия 24,0 57,6
Австрия 228,0 1094,0
Болгария 13,3 162,0
Великобритания 0,6 2,7
Германия 344,0 1149,0
Греция 0,4 3,1
Дания 3,0 20,8
Исландия 4,0 20,0
Италия 1,2 6,4
Канада 360,0 891,0
Литва 21,0 598,8
Нидерланды 10,8 57,4
Норвегия 6,0 31,9
Польша 26,2 108,3
Россия 1,2 11,5
Словакия 1,4 12,1
Словения 2,6 46,8
США 4 800,0 12 000,0
Финляндия 80,5 484,0
Франция 48,0 255,0
Чехия 8,0 38,2
Швейцария 300,0 1 962,0
Швеция 377,0 4 128,0
Япония 3,9 64,0
Всего: 6 675,4 23 268,9

 

Вывод

Из всего этого вывод последует таков: Тепловые насосы переносят, а не вырабатывают энергию. Этим и обусловлена их существенные преимущества по сравнению с традиционными источниками тепла. Тепловые насосы представляют собой устройство для перевода низкотемпературной энергии в высокотемпературную энергию и обратно.

Передача тепла производится рабочим телом-хладагентом (фреоном) также, как в обычном холодильнике. Электроэнергия, потребляемая тепловым насосом, тратится лишь на перемещение хладагента по системе с помощью компрессора.

Тепловые насосы (ТН) работают, перемещая тепловую энергию, в отличие от печи в которой происходит преобразование химической энергии в процессе горения. Принцип работы теплового насоса основывается на термодинамическом цикле Карно. По такому же принципу работают холодильники и кондиционеры (воздушные тепловые насосы). Охлаждение и обогрев в тепловом насосе обеспечивается компрессионным циклом, т.е. непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация - при высоком давлении и температуре. В испарителе происходит отбор низкопотенциальной энергии у источника с относительно низкой температурой, а в конденсаторе - выделение концентрированной энергии в систему распределения тепла здания.

 

 

Министерство образования и науки Российской Федерации

Государственное бюджетное образовательное учреждение

высшего профессионального образования

«Владимирский государственный университет
имени Александра Григорьевича и Николая Григорьевича Столетовых»

 

Кафедра Теплогазоснабжения, вентиляции и гидравлики

 

 

Реферат

по дисциплине

«Нетрадиционные источники энергии»

на тему

«Низкопатенциальное тепло земли»

 

 

Выполнил:

ст. гр. ТГВ-108

Прядехин С.В.

Принял:

Тарасенко В.И..

 

 

Владимир 2012

Оглавление:

 

Введение………………………………………………….……………………………..……..……2

1. История технологии.……………………………………………………………………….....…3

2. Грунт как источник низкопотенциальной тепловой энергии…………………………………3-5

3. Работа теплового насоса.…………………………………………………..……………….....5-6

4. Условный КПД тепловых насосов. …………………………………………..………………6-7

5. Виды систем использования низкопотенциальной тепловой энергии земли.…………...7-12

6. «Устойчивость» систем использования низкопотенциального тепла земли.…………..12-14

7 Область применения тепловых насосов………………………………………………...……..15

8. Преимущество тепловых насосов.……………………………………………..………….….16

9. Ограничения технологии ………………………………………………………………..…….16

10. Техническое обслуживание ………………………………………………………………….17

11. Пиковый электроподогрев.…………………………………………………………….…….17

Приложение 1 Термодинамический цикл теплового насоса …………………….……………18

Приложение 2 ОБЩИЕ УКАЗАНИЯ ПО ПРОЕКТИРОВАНИЮ СИСТЕМЫ СБОРА НИЗКОПОТЕНЦИАЛЬНОГО ТЕПЛА ГРУНТА (ССНТГ)……………………….……….18-19

Приложение 3 МЕТОДИКА ОЦЕНКИ ПОДЪЕМА ПОВЕРХНОСТИ ГРУНТА ПРИ ОБРАЗОВАНИИ В ГРУНТОВОМ МАССИВЕ ОБЛАСТЕЙ МЕРЗЛОГО ГРУНТА…….….19

Приложение 4 О ТЕПЛОФИЗИЧЕСКИХ СВОЙСТВАХ ГРУНТОВ………………………19-21

Приложение 5 ПЕРСПЕКТИВЫ ВНЕДРЕНИЯ ТЕПЛОВЫХ НАСОСОВ В СИСТЕМУ ТЕПЛОСНАБЖЕНИЯ МОСКВЫ…………………………………………………………..…22-23

Приложение 6 Расчет горизонтального коллектора теплового насоса……………..………24-26.

Приложение 7 Мировой уровень использования низкопотенциальной
тепловой энергии земли посредством тепловых насосов …………………………………….…27

Список литературы……………………………………………………………..…………………...28

 

Список литературы:

 

1. Rybach L. Status and prospects of geothermal heat pumps (GHP) in Europe and worldwide; sustainability aspects of GHPs. International course of geothermal heat pumps, 2002.

2. Васильев Г. П., Крундышев Н. С. Энергоэффективная сельская школа в Ярославской области // АВОК. 2002. № 5.

3. Sanner B. Ground Heat Sources for Heat Pumps (classification, characteristics, advantages). 2002.

4. ORKUSTOFNUN Working Group, Iceland (2001): Sustainable production of geothermal energy - suggested definition. IGA News no. 43. January-March, 2001. 1-2.

5. Rybach L., Sanner B. Ground-source heat pump systems - the European experience. GeoHeatCenter Bull. 21/1, 2000.

6. Васильев Г.П. Энергоэффективные здания с теплонасосными системами теплоснабжения // ЖКХ. 2002. №12.

7. Руководство по применению тепловых насосов с использованием вторичных энергетических ресурсов и нетрадиционных возобновляемых источников энергии. Москомархитектура. ГУП "НИАЦ", 2001.

8. Энергоэффективный жилой дом в Москве // АВОК. 1999. № 4.

9. Васильев Г. П. Энергоэффективный экспериментальный жилой дом в микрорайоне Никулино-2 // АВОК. 2002. № 4.

10. См. книгу В. Н. Богословского, А. Н. Сканави «Отопление» (М., 1991), а также СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование».

11. Г. П. Васильев. Теплохладоснабжение зданий и сооружений с использованием низкопотенциальной тепловой энергии поверхностных слоев земли / Дисс. на соискание ученой степени доктора технических наук. – М.: МГСУ, 2006.

 

Поделиться:





Воспользуйтесь поиском по сайту:



©2015 - 2024 megalektsii.ru Все авторские права принадлежат авторам лекционных материалов. Обратная связь с нами...